Thursday, April 2, 2020

If Cosmology Is "Off," How Can Biology Be "On?" - 2

"Help!"
I. Virus Breaking News

In years past, perhaps even a decade of years, I have meandered through the world of what "science" makes of the enigmatic virus world.

Just yesterday, after pondering a very informative blog about Covid-19, I was surprised when a young scientist ended his post with "Science will save our species" (Tim James Science Dot Com).

Which brought up the question in my mind for about an instant: "which came first 'science' or the virgin species (The Virgin MOMCOM - 2)?"

Meanwhile, as other specialists attempt to discern the origin of the virus involved in the current pandemic (Covid-19 Nature) the U.S. Military is no doubt wondering about it too:
"The captain of a US aircraft carrier, with 5,000 people onboard, including an unconfirmed number who have tested positive for Covid-19, has called for help to save the lives of his sailors.

The US aircraft carrier Theodore Roosevelt was in the Pacific when the navy reported its first coronavirus case a week ago. It has since pulled into port in Guam, a US island territory in the western Pacific.

A four-page letter, written by the ship’s captain, describes a bleak situation onboard the nuclear-powered carrier as more sailors test positive for the virus.

Captain Brett Crozier, the ship’s commanding officer, wrote that the carrier lacked enough quarantine and isolation facilities and warned the current strategy would slow but fail to eradicate the highly contagious respiratory virus."
(US sailors will die unless coronavirus-hit aircraft carrier evacuated, captain warns, emphasis added). They were out at sea isolated from crowds over two weeks, yet the virus emerged:
"The ship was last in port in Vietnam more than two weeks ago. It is not clear where the sailors initially contracted the virus. The Navy is now in the process of flying all personnel off the ship."
(CNN, emphasis added). This begs the question as to whether or not a 14 day self quarantine or mandatory 14 day quarantine is sufficient ... and whether or not the virus simply emerges when certain conditions develop in humans or animals.

II. But ... but ... Microbes

Starting out the trek to the origin of viruses, or outbreaks thereof, without contemplating microbes is putting the cart before the horse:
"... some 90 percent of the protein-encoding cells in our body are microbes ... 99 percent of the functional genes in the body are microbial ... exchanging messages with genes inside human cells ... microbes cohabitating our body outnumber human cells by a factor of 10, making us actually “superorganisms” that use our own genetic repertoire as well as those of our microbial symbionts ... We just happen to look human because our human cells are much larger than bacterial cells ... no matter how you look at it, it’s high time we acknowledge that part of being human is being microbial ...
...
Microbes may indeed be subtly changing our brain early on — and for what purposes we cannot yet say ... the mere fact that microorganisms can shape our minds brings up many more questions about how humans develop their identity ... these findings call for a complete re-examination of human physiology and immunology. Attributes that were assumed to be human traits have been shown to result from human–microbe interactions.
...
Some would say that genomics has been able to distil some humility into humankind. The finalised version of the human genome deprived us of the illusion that we are one of the most complex creatures on Earth — an illusion that was at the basis of some guesses that Homo sapiens was expected to have at least 100,000 genes. When we look at a table of genomes by species, and specifically at the number of genes that have been counted or estimated for each species, we notice that humans are surpassed by several plants and invertebrates."
(If Cosmology Is "Off," How Can Biology Be "On?", emphasis added). So why microbes ... when the news is virus ... Virus ... VIRUS?

Good question, good answer:
"There are an estimated 1031 viruses on Earth. That is to say: there may be a hundred million times more viruses on Earth than there are stars in the universe. THE MAJORITY OF THESE VIRUSES INFECT [an "infectious laugh" or "infectious enthusiasm"] MICROBES, including bacteria, archaea, and microeukaryotes, all of which are vital players in the global fixation and cycling of key elements such as carbon, nitrogen, and phosphorus. These two facts combined—the sheer number of viruses and their intimate relationship with microbial life—suggest that viruses, too, play a critical role in the planet’s biosphere."
(On The Origin of the Genes of Viruses, emphasis added). You and I grew up in the era of war on viruses ("this is war"), which is an infectious war.

Even today already I heard in the virus news for the umpteenth time "this is war".

The warmonger division of "Big Pharma" has conducted a war against viruses seemingly for eons while profiteering mightily, in the same fashion that our regular war managers have conducted wars against anything that moves (On The Origin of The Bully Religion - 2).

Our managers evidently consider war science to be a fundamental need, and they take all the time necessary to indoctrinate us accordingly:
"Ok, so now it is probably a safe time to pull back the curtain to reveal the wizard of odds, the father of MOMCOM DNA:
THE conscious and intelligent manipulation of the organized habits and opinions of the masses is an important element in democratic society. Those who manipulate this unseen mechanism of society constitute an invisible government which is the true ruling power of our country. We are governed, our minds are molded, our tastes formed, our ideas suggested, largely by men we have never heard of. This is a logical result of the way in which our democratic society is organized. Vast numbers of human beings must cooperate in this manner if they are to live together as a smoothly functioning society.
Edward L. Bernays

Our invisible governors are, in many cases, unaware of the identity of their fellow members in the inner cabinet.

They govern us by their qualities of natural leadership, their ability to supply needed ideas and by their key position in the social structure. Whatever attitude one chooses to take toward this condition, it remains a fact that in almost every act of our daily lives, whether in the sphere of politics or business, in our social conduct or our ethical thinking, we are dominated by the relatively small number of persons — a trifling fraction of our hundred and twenty [now 320] million — who understand the mental processes and social patterns of the masses. It is they who pull the wires which control the public mind, who harness old social forces and contrive new ways to bind and guide the world.
...
It is the purpose of this book to explain the structure of the mechanism which controls the public mind, and to tell how it is manipulated by the special pleader who seeks to create public acceptance for a particular idea or commodity. It will attempt at the same time to find the due place in the modern democratic scheme for this new propaganda and to suggest its gradually evolving code of ethics and practice."
(Propaganda, by Edward L. Bernays, emphasis added). Old Fast Eddie totally believed in propaganda, and was not all "don't ask don't tell" in the closet about it [he urged his client The War Department to change its name to The Defense Department].

He is, therefore, "affectionately" called The Father of Spin, for which his grand ole daughter MOMCOM is so proud, even causing many heads to spin with pride."
(A Closer Look At MOMCOM's DNA - 4, [emphasis added]). Ok, so let's put two and two together.

III. The Mother of Virus Outbreaks - Antibiotics?

In the world of history and herstory one subject, catastrophes, does stand out just as it does now ... here in the Anthropocene (nicknamed "the sixth mass extinction era").

"What of it?" you might ask, so, let's review this long quote (read between the lines):

The Wikipedia graph to the left shows 5 high peaks we call mass extinction events, with smaller ones that were not massive enough to be in the top five.

Wikipedia describes these events: "An extinction event (also known as a mass extinction or biotic crisis) is a widespread and rapid decrease in the amount of life on Earth. Such an event is identified by a sharp change in the diversity and abundance of macroscopic life. It occurs when the rate of extinction increases with respect to the rate of speciation. Because the majority of diversity and biomass on Earth is microbial, and thus difficult to measure, recorded extinction events affect the easily observed, biologically complex component of the biosphere rather than the total diversity and abundance of life" (Extinction event).

Notice that "macroscopic life" is used as the measuring stick, because "microscopic life" (virus, microbe) is not found easily, if at all, in the fossil record.

Our science tells us that viruses and microbes lived through all of these mass extinctions (Viroids: Survivors from the RNA World?).

However, we are not told what affects the mass extinctions had on them.

Probably because it has not yet been sufficiently considered.

We are only recently discovering much about what the Wikipedia article above mentioned:
"... the majority of diversity and biomass on Earth is microbial, and thus difficult to measure, recorded extinction events affect the easily observed, biologically complex component of the biosphere rather than the total diversity and abundance of life ..."
(ibid, "Extinction Event"). If you read that closely our science considers extinction events in the context of the few species that are large enough to leave a trail we can follow easily, but does not consider the affects mass extinctions have had on by far the most abundant species: viruses and microbes.

Regular readers know that Dredd Blog has contemplated the impact of mass extinctions on microbes and viruses:
Recently, scientists discovered that even humans and microbes are symbionts, and in fact humans can not reproduce without them.

One can surmise that the K-T boundary extinction event was globally traumatic, since ~90% of land species, including dinosaurs, bit the extinction dust, as did perhaps ~50% of ocean species.

How did the remaining microbes react?

Since the utter destruction and catastrophe caused by the K-T boundary extinction was globally extreme, the microbes that survived would have been extremist types for the most part, otherwise they would have been unable to exist in those new extreme conditions.

The subsequent extreme events of taking over control of mammalian female placenta, establishing a virgin species, or perhaps engendering the adaptability of newts, may have been microbial reactions to the extreme trauma of the K-T boundary extinction event.

The spurious activity caused by any such trauma may explain why not all mammals, for example the rabbit, need those microbes to reproduce.

Evidence, in the form of the oldest rabbit fossil yet found, shows that it originated after the time of the K-T extinction event.

The rabbit, and species close to it, are not like other mammals such as the gorilla, monkey, orangutan, or human, which must have microbe (viral) help in order to reproduce via a functional placenta.
(Are Microbes The Origin of PTSD?). When 50% to 90% of the creatures that microbes and viruses interacted with suffered apocalyptic death, there was no doubt some form of stress.

We know that microbial life has flip-flopped from time to time, from pathogen to mutualist, which is in accord with life changing stressful events:
Like pretty much all multi-cellular organisms, humans enjoy the benefits of helpful bacteria. (As you may have heard, there are more bacteria in the human body than cells.) These mutualistic microbes live within the body of a larger organism, and, like any good long-term house guest, help out their hosts, while making a successful life for themselves. It’s a win-win situation for both parties.

Scientists still don’t understand exactly how these relationships began, however. To find out, a team of researchers from the University of California, Riverside, used protein markers to create a detailed phylogenic tree of life for 405 taxa from the Proteobacteria phylum—a diverse group that includes pathogens such as salmonella as well as both mutualistic and free-living species.

Those analyses revealed that mutualism in Proteobacteria independently evolved between 34 to 39 times, the researchers report in the journal Proceedings of the Royal Society B.  The team was a bit surprised to find that this happened so frequently, inferring that evolution apparently views this lifestyle quite favorably.

Their results also show that mutualism most often arises in species that were originally parasites and pathogens.
(Communicating With The Underworld). Humans are the same way, in the sense that they will become cannibals or worse in some stressful situations:
Uruguayan Air Force Flight 571, also known as the Andes flight disaster and, in South America, as the Miracle of the Andes (El Milagro de los Andes) was a chartered flight carrying 45 people, including a rugby union team, their friends, family and associates, that crashed in the Andes on 13 October 1972. More than a quarter of the passengers died in the crash and several others quickly succumbed to cold and injury. Of the 27 who were alive a few days after the accident, another eight were killed by an avalanche that swept over their shelter in the wreckage. The last 16 survivors were rescued on 23 December 1972, more than two months after the crash.

The survivors had little food and no source of heat in the harsh conditions at over 3,600 metres (11,800 ft) altitude. Faced with starvation and radio news reports that the search for them had been abandoned, the survivors fed on the dead passengers who had been preserved in the snow.
(Wikipedia, emphasis added). Like humans who are intelligent, viruses and microbes also exhibit a form of intelligence (The Intelligence of the Virus realm, The Intelligence of Plants).

Some of the microbes have been buried in sediments during these mass extinction events, and are still alive and "doing their thing":
The explanation is that deep life is able to proceed in extreme slow motion. This was illustrated by Price and Sowers (5), who compiled data from a wide range of environments. A typical metabolic rate of microorganisms in ecosystems on the surface of our planet, such as soil, lake water, or seawater, is 0.1 to 10 fmol C⋅cell−1⋅d−1, corresponding to 10−3 to 10−1 g C metabolized per gram cell C per hour (Fig. 1). The mean metabolic rate for deep subsurface bacteria is typically four orders of magnitude lower: 10−5 to 10−3 fmol C⋅cell−1⋅d−1 (6, 7), corresponding to 10−7 to 10−5 g C⋅g−1 cell C⋅h−1. Such numbers are calculated by counting all the microorganisms in a deep sediment core and dividing by the rate at which the main metabolic substrates or products are turning over in the bulk sediment. The process rates are determined from transport-reaction models of pore-water constituents or from direct experimental process measurements using sensitive radiotracer methods. The rationale for taking a mean of the entire microbial community is the assumption that most of the cells are actively engaged in the energy metabolism. This assumption is now strongly supported by the findings of Morono et al. (3).
(Deep Subseafloor Microbial Cells on Physiological Standby; cf Carbon & Nitrogen Assimilation in Deep Subseafloor Microbes). They know or detect that something happened to bury them, so, they do what they can to survive ... they wait or adapt ... in very, very slow motion.

Perhaps those of their kind who survived the mass extinctions on the surface "know" that human civilization has now evolved, and that humanity is afraid of them --and humans are therefore making war on them?

Perhaps that human policy will have worse consequences than diplomacy would have (On the Origin of the Genes of Viruses - 11, The Intelligence of the Virus realm, The Intelligence of Plants).

Could it be that there are 40 trillion of the most populous and most experienced living things on this planet yelling "nuke 'em" -- like a few hundred of the tiny population of humans are?

Let's be mutualistic rather than pathogenic.

(What Did The Mass Extinctions Do To Viruses and Microbes?). That was a record breaking long quote.

So, what happens when antibiotic addiction takes hold?

IV. Closing Comments

Two things take place.

1) The targets of the war on microbes can and do become immune to the drugs used in the drug war:
In the words of England’s chief medical officer, Sally Davies: “The world is facing an antibiotic apocalypse.” Unless action is taken to halt the practices that have allowed antimicrobial resistance to spread and ways are found to develop new types of antibiotics, we could return to the days when routine operations, simple wounds or straightforward infections could pose real threats to life, she warns.

That terrifying prospect will be the focus of a major international conference to be held in Berlin this week. Organised by the UK government, the Wellcome Trust, the UN and several other national governments, the meeting will be attended by scientists, health officers, pharmaceutical chiefs and politicians. Its task is to try to accelerate measures to halt the spread of drug resistance, which now threatens to remove many of the major weapons currently deployed by doctors in their war against disease.
(Antibiotic apocalypse’: doctors sound alarm over drug resistance); and

2) An astronomical number of viruses ...  viruses that were symbiotic to their microbe hosts ... hosts that were killed by the antibiotics, become homeless and desperately look for another home (viruses are not killed by antibiotics).

And we all know what hell it is to be homeless in today's world ... for pets, for humans, and for viruses.

That is why we seriously need to ponder whether or not we are producing an inordinate number of homeless viruses that may become psychotic and do  things to their new unwitting hosts.

The next post in this series is here, the previous post in this series is here.

How Microbes Communicate In The Tiniest Language:



Monday, March 30, 2020

The Ghost Plumes - 12

Thwaites Glacier, Antarctica
I. Review

Some readers may be wondering why I am focusing so much on the ghost plumes of Antarctica.

Please let me remind those readers that we are in newly confirmed territory on an issue that has been hypothesized a lot here on Dredd Blog.

Yes, the emphasis on ghost plumes has been around for quite a while prior to it's recent confirmation, as was the ghost water issue and the ghost photon issue (NASA Busts The Ghost; The Ghost-Water Constant, 2, 3, 4, 5, 6, 7, 8, 9; The Ghost Plumes, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, The Ghost Photons, 2, 3).

In this context a "ghost" is what many scientists refuse to see ("none are so blind as those who refuse to see").

What Dredd Blog indicated a couple of years prior to a recent discovery was:
"Why make a big deal out of a chunk of ice that is out of sight and out of mind?

Why make a big deal out of a chunk of ice that only twenty-eight (28) humans have ever set their feet upon?
"
(Hot, Warm, & Cold Thermal Facts: Tidewater-Glaciers - 3). So, let's review the recent confirmation, two years later, of the ghost plume hypothesis:
"A team of scientists has observed, for the first time, the presence of warm water at a vital point underneath a glacier in Antarctica--an alarming discovery that points to the cause behind the gradual melting of this ice shelf while also raising concerns about sea-level rise around the globe.

Warm waters in this part of the world, as remote as they may seem, should serve as a warning to all of us about the potential dire changes to the planet brought about by climate change," explains David Holland, director of New York University's Environmental Fluid Dynamics Laboratory and NYU Abu Dhabi's Center for Global Sea Level Change, which conducted the research. "If these waters are causing glacier melt in Antarctica, resulting changes in sea level would be felt in more inhabited parts of the world.

The recorded warm waters--more than two degrees above freezing--flow beneath the Thwaites Glacier, which is part of the Western Antarctic Ice Sheet. The discovery was made at the glacier's grounding zone--the place at which the ice transitions between resting fully on bedrock and floating on the ocean as an ice shelf and which is key to the overall rate of retreat of a glacier."
(Antarctica 2.0 - 8, emphasis added). Remember also that the current Covid-19 pandemic was likened to this climate change issue in the previous post (The Ghost Plumes - 11).

II. Revise

I think this requires software revision in the sense that we need to develop a way to zero in on the plume quantities all around the Antarctica grounding line.

I am continuing to do that.

This post is an update on the progress, and sometimes when difficulties are encountered, the lack thereof.

III. Reveal

Today I am updating the issue with a disclosure of the HTML files that elucidate the graphs that are displayed from time to time.

This means that when graphs are posted here on Dredd Blog there will also be HTML files posted so that readers can equate the numbers to the graphs.

The HTML files are in Appendix A (plume flow) and Appendix B (ice melt).

These data files relate to the graphs presented in the previous post (Appendix A graphs, Appendix B graphs).

IV. Closing Comments

I will continue to improve upon the percentages mentioned in the recent posts in this series.

That is, the percentage of the above sea level ice sheet loss (current estimate is 32%) compared to the below sea level ice sheet loss at Tidewater Glaciers (current estimate is 68%).

The next post in this series is here, the previous post in this series is here.



Appendix A - Plume Flow

This is an appendix to: The Ghost Plumes - 12

Fig. 1 and Fig. 2, below, show the locations of the "areas" or "sectors" along the coast and grounding lines of Antarctica.

The graphs constructed from these computations are here.

Fig. 1 Antarctica Areas A-F and WOD zones

Fig. 2 Antarctica Areas A-F

In the HTML tables below:

"epi" means epipelagic depth level
"meso" means mesopelagic depth level
"bathy" means bathypelagic depth level
"yr" means the sum of epi, meso, and bathy for that year
"total" means the cumulative total for all years


Area A: Indian Ocean (PLUME FLOW)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.0610647 0.250861 0.0213108 0.333236 0.333236
1971 0.136535 0.446758 0.0831623 0.666455 0.999691
1972 0.0367255 0.146944 0.0368099 0.22048 1.22017
1973 0.0832528 0.333036 0.0833048 0.499594 1.71976
1974 0.0999504 0.399755 0.0999646 0.59967 2.31943
1975 0.0899637 0.362784 0.0464642 0.499212 2.81865
1976 0.0583539 0.2394 0.0217055 0.31946 3.13811
1977 0.0714935 0.286188 0.071447 0.429128 3.56723
1978 0.0367108 0.146826 0.036687 0.220224 3.78746
1979 0.13676 0.46007 0.0781094 0.674939 4.4624
1980 0.111844 0.447647 0.113629 0.673121 5.13552
1981 0.13644 0.545695 0.136718 0.818852 5.95437
1982 0.114506 0.458053 0.11445 0.68701 6.64138
1983 0.136349 0.545375 0.136332 0.818057 7.45944
1984 0.140255 0.570369 0.121945 0.832569 8.29201
1985 0.155108 0.620453 0.136529 0.91209 9.2041
1986 0.0652053 0.185327 0.0463 0.296832 9.50093
1987 0.155199 0.545457 0.13625 0.836907 10.3378
1988 0.0614291 0.245688 0.0362936 0.343411 10.6812
1989 0.0609544 0.243852 0.0609989 0.365805 11.0471
1990 0.136534 0.546155 0.1366 0.81929 11.8663
1991 0.0833137 0.333341 0.0435268 0.460181 12.3265
1992 0.136443 0.545784 0.108416 0.790643 13.1172
1993 0.136676 0.555224 0.0905068 0.782407 13.8996
1994 0.136357 0.545881 0.136262 0.8185 14.7181
1995 0.0581465 0.232559 0.058156 0.348861 15.0669
1996 0.136386 0.545481 0.136214 0.818082 15.885
1997 0.0464313 0.185704 0.0469078 0.279043 16.1641
1998 0.08995 0.359757 0.0900316 0.539738 16.7038
1999 0.0150099 0.146877 0.0367452 0.198633 16.9024
2000 0.0213179 0.0852618 0.0213092 0.127889 17.0303
2001 0.0900022 0.359967 0.0363367 0.486306 17.5166
2002 0.0363752 0.145567 0.0213118 0.203254 17.7199
2003 0.107978 0.431861 0.107981 0.64782 18.3677
2004 0.136556 0.546768 0.111741 0.795064 19.1628
2005 0.111807 0.447175 0.0833773 0.642359 19.8051
2006 0.136282 0.545064 0.136137 0.817483 20.6226
2007 0.136464 0.545792 0.136584 0.81884 21.4414
2008 0.114983 0.460094 0.0975671 0.672644 22.1141
2009 0.136433 0.545667 0.136747 0.818846 22.9329
2010 0.111792 0.447028 0.112018 0.670838 23.6038
2011 0.13648 0.545856 0.136778 0.819114 24.4229
2012 0.1364 0.545538 0.136698 0.818637 25.2415
2013 0.136377 0.545445 0.136203 0.818025 26.0595
2014 0.136509 0.545972 0.136861 0.819343 26.8789
2015 0.136441 0.545699 0.136637 0.818777 27.6977
2016 0.136473 0.546376 0.111765 0.794613 28.4923
2017 0.136467 0.545806 0.136799 0.819072 29.3114
2018 0.176118 0.704389 0.176661 1.05717 30.3685
2019 0.13646 0.545775 0.13657 0.818804 31.1873

Antarctica (PLUME FLOW)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.535722 1.96839 0.306284 2.8104 2.8104
1971 0.554386 2.11797 0.501074 3.17343 5.98383
1972 0.343399 1.38536 0.168468 1.89723 7.88106
1973 0.367238 1.45493 0.323289 2.14545 10.0265
1974 0.40174 1.61624 0.283502 2.30148 12.328
1975 0.230589 0.92522 0.186944 1.34275 13.6707
1976 0.368458 1.48062 0.206616 2.05569 15.7264
1977 0.317773 1.38141 0.296933 1.99612 17.7226
1978 0.455095 1.91717 0.377122 2.74939 20.4719
1979 0.522972 2.11676 0.266131 2.90587 23.3778
1980 0.459649 1.43779 0.310408 2.20784 25.5857
1981 0.540276 2.17002 0.379803 3.0901 28.6758
1982 0.405197 1.62186 0.306987 2.33404 31.0098
1983 0.634373 2.54327 0.482504 3.66015 34.6699
1984 0.60572 2.43938 0.342134 3.38724 38.0572
1985 0.581746 2.32834 0.427541 3.33763 41.3948
1986 0.502482 1.93867 0.277432 2.71858 44.1134
1987 0.569416 2.20825 0.331567 3.10923 47.2226
1988 0.504019 2.01992 0.263414 2.78735 50.01
1989 0.357216 1.42954 0.350834 2.13759 52.1476
1990 0.530224 2.12153 0.414069 3.06582 55.2134
1991 0.393557 1.36376 0.127534 1.88485 57.0982
1992 0.619099 2.47934 0.506236 3.60468 60.7029
1993 0.416176 1.6731 0.36947 2.45874 63.1617
1994 0.891566 3.56867 0.722213 5.18245 68.3441
1995 0.581346 2.32733 0.501003 3.40968 71.7538
1996 0.574756 2.30396 0.551903 3.43062 75.1844
1997 0.372322 1.49025 0.262792 2.12536 77.3098
1998 0.458831 1.74131 0.330216 2.53036 79.8401
1999 0.404312 1.55891 0.226651 2.18987 82.03
2000 0.451563 1.81673 0.311738 2.58003 84.61
2001 0.439318 1.76231 0.288643 2.49027 87.1003
2002 0.315747 1.26293 0.263067 1.84174 88.942
2003 0.49372 1.97465 0.393722 2.86209 91.8041
2004 0.522316 2.08963 0.497649 3.1096 94.9137
2005 0.625102 2.50112 0.471402 3.59762 98.5114
2006 0.694335 2.78146 0.467653 3.94345 102.455
2007 0.874857 3.50218 0.750668 5.1277 107.583
2008 0.847924 3.39197 0.660147 4.90004 112.483
2009 0.816781 3.26798 0.604777 4.68953 117.172
2010 0.779631 3.02475 0.640605 4.44499 121.617
2011 0.683969 2.73558 0.67897 4.09852 125.716
2012 0.609718 2.43933 0.565266 3.61431 129.33
2013 0.749734 3.00369 0.577377 4.3308 133.661
2014 0.799065 3.19846 0.727762 4.72528 138.386
2015 0.523448 2.09584 0.500815 3.12011 141.506
2016 0.657524 2.63509 0.475781 3.76839 145.274
2017 0.70352 2.82355 0.604329 4.1314 149.406
2018 1.02716 4.11367 0.811482 5.95231 155.358
2019 0.746906 2.98728 0.747246 4.48143 159.84

Area B: Western Pacific Ocean (PLUME FLOW)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.147725 0.406366 0.101506 0.655597 0.655597
1971 0.145126 0.580438 0.145087 0.870651 1.52625
1972 0.0566318 0.230012 0.038806 0.32545 1.8517
1973 0.0777503 0.319199 0.0389328 0.435883 2.28758
1974 0.0658311 0.263578 0.0485173 0.377927 2.66551
1975 0 0 0 0 2.66551
1976 0.0435405 0.174142 0.0442133 0.261896 2.9274
1977 0.0875347 0.350909 0.0662201 0.504664 3.43207
1978 0.127789 0.512088 0.0402126 0.680089 4.11216
1979 0.145607 0.584006 0.0527326 0.782345 4.8945
1980 0.106667 0.426811 0.0616388 0.595117 5.48962
1981 0.127712 0.510787 0.111084 0.749582 6.2392
1982 0.0499151 0.199969 0.0512288 0.301113 6.54031
1983 0.14521 0.580773 0.145824 0.871806 7.41212
1984 0.11011 0.44469 0.0903384 0.645139 8.05726
1985 0.0972117 0.389433 0.0802715 0.566916 8.62418
1986 0.110173 0.442553 0.0221991 0.574926 9.1991
1987 0.109985 0.439997 0.112868 0.66285 9.86195
1988 0.145191 0.580864 0.145495 0.871551 10.7335
1989 0.0575725 0.230422 0.0578932 0.345888 11.0794
1990 0.123978 0.496224 0.107779 0.727981 11.8074
1991 0.0520217 0.0647988 0.0161943 0.133015 11.9404
1992 0.123002 0.493342 0.0890538 0.705398 12.6458
1993 0.14515 0.580532 0.145161 0.870843 13.5166
1994 0.145197 0.580586 0.145034 0.870817 14.3874
1995 0.145151 0.580537 0.145085 0.870774 15.2582
1996 0.14504 0.580093 0.144869 0.870002 16.1282
1997 0.0865482 0.346152 0.0866176 0.519318 16.6475
1998 0.106135 0.42449 0.10638 0.637005 17.2845
1999 0.093755 0.219707 0.0193765 0.332838 17.6174
2000 0.0222041 0.088806 0.0221966 0.133207 17.7506
2001 0.114645 0.458527 0.114712 0.687884 18.4385
2002 0.145204 0.580747 0.104181 0.830132 19.2686
2003 0.145173 0.580624 0.145173 0.87097 20.1396
2004 0.145114 0.580389 0.1452 0.870702 21.0103
2005 0.123781 0.495066 0.123757 0.742603 21.7529
2006 0.145295 0.581111 0.146574 0.87298 22.6259
2007 0.145228 0.580844 0.145466 0.871538 23.4974
2008 0.14513 0.580451 0.145186 0.870767 24.3682
2009 0.145114 0.580389 0.145428 0.870931 25.2391
2010 0.145287 0.581079 0.14565 0.872015 26.1111
2011 0.145123 0.580425 0.145225 0.870774 26.9819
2012 0.145065 0.580193 0.144964 0.870222 27.8521
2013 0.145163 0.580586 0.145181 0.87093 28.723
2014 0.145109 0.580368 0.145185 0.870662 29.5937
2015 0.145168 0.580605 0.145373 0.871146 30.4648
2016 0.145169 0.58061 0.145444 0.871223 31.3361
2017 0.145163 0.580583 0.14544 0.871185 32.2073
2018 0.147107 0.588359 0.147135 0.882601 33.0899
2019 0.145101 0.580338 0.144969 0.870409 33.9603

Area C: Ross Sea (PLUME FLOW)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.106789 0.430234 0 0.537023 0.537023
1971 0.106458 0.425784 0.106603 0.638845 1.17587
1972 0.0846467 0.338635 0.0440081 0.46729 1.64316
1973 0.00694579 0.00562844 0.00140945 0.0139837 1.65714
1974 0.102222 0.418028 0.00140492 0.521655 2.1788
1975 0.00683656 0.027343 0.00688017 0.0410598 2.21986
1976 0.132579 0.531202 0.00690299 0.670683 2.89054
1977 0.00141009 0.115048 0.00143363 0.117892 3.00843
1978 0.106584 0.522027 0.112553 0.741164 3.7496
1979 0.106709 0.537167 0.00144149 0.645317 4.39491
1980 0.107247 0.02783 0.00144773 0.136525 4.53144
1981 0.118383 0.480493 0.0126046 0.61148 5.14292
1982 0.106594 0.427173 0.00703452 0.540801 5.68372
1983 0.132539 0.533546 0.0015143 0.667599 6.35132
1984 0.132377 0.529965 0.111667 0.774009 7.12533
1985 0.132495 0.530823 0.0272416 0.69056 7.81589
1986 0.106787 0.428962 0.00140859 0.537158 8.35305
1987 0.10698 0.433872 0.00141435 0.542266 8.89531
1988 0.132466 0.529877 0.0327124 0.695055 9.59037
1989 0.0180482 0.0728011 0.00687039 0.0977196 9.68809
1990 0.10529 0.421538 0.00548768 0.532315 10.2204
1991 0 0 0 0 10.2204
1992 0.106414 0.425768 0.101064 0.633246 10.8536
1993 0 0 0 0 10.8536
1994 0.18279 0.731472 0.0831308 0.997393 11.851
1995 0.106483 0.426057 0.101278 0.633818 12.4849
1996 0.105295 0.421176 0.106573 0.633043 13.1179
1997 0.105179 0.420668 0.111095 0.636942 13.7548
1998 0.10538 0.421646 0 0.527025 14.2819
1999 0 0 0 0 14.2819
2000 0.183201 0.734246 0.0664268 0.983874 15.2657
2001 0 0 0 0 15.2657
2002 0 0 0 0 15.2657
2003 0.106698 0.426744 0.00687909 0.540321 15.8061
2004 0.106429 0.425666 0.106463 0.638558 16.4446
2005 0.0677404 0.271055 0.067645 0.40644 16.8511
2006 0.0272694 0.109065 0.00141326 0.137747 16.9888
2007 0.184115 0.736376 0.179048 1.09954 18.0883
2008 0.172877 0.691428 0.0730986 0.937404 19.0258
2009 0.126942 0.508616 0.0271687 0.662727 19.6885
2010 0.195695 0.78377 0.0792341 1.0587 20.7472
2011 0.172818 0.691219 0.167294 1.03133 21.7785
2012 0.106432 0.425696 0.106737 0.638865 22.4174
2013 0.127322 0.512765 0.0273401 0.667427 23.0848
2014 0.132395 0.529542 0.127904 0.789841 23.8746
2015 0.0843286 0.337275 0.0845531 0.506157 24.3808
2016 0.184332 0.740459 0.0845892 1.00938 25.3902
2017 0.184468 0.747586 0.0842177 1.01627 26.4065
2018 0.184518 0.743508 0.0847188 1.01275 27.4192
2019 0.183928 0.735626 0.183893 1.10345 28.5226

Area D: Amundsen Sea (PLUME FLOW)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0 0 0 0 0
1971 0 0 0 0 0
1972 0 0 0 0 0
1973 0.0205345 0.0821283 0.0210954 0.123758 0.123758
1974 0 0 0 0 0.123758
1975 0 0 0 0 0.123758
1976 0 0 0 0 0.123758
1977 0 0 0 0 0.123758
1978 0 0 0 0 0.123758
1979 0 0 0 0 0.123758
1980 0 0 0 0 0.123758
1981 0 0 0 0 0.123758
1982 0 0 0 0 0.123758
1983 0 0 0 0 0.123758
1984 0 0 0 0 0.123758
1985 0 0 0 0 0.123758
1986 0 0 0 0 0.123758
1987 0 0 0 0 0.123758
1988 0 0 0 0 0.123758
1989 0 0 0 0 0.123758
1990 0 0 0 0 0.123758
1991 0 0 0 0 0.123758
1992 0 0 0 0 0.123758
1993 0 0 0 0 0.123758
1994 0.0879034 0.351573 0.0878779 0.527354 0.651112
1995 0 0 0 0 0.651112
1996 0 0 0 0 0.651112
1997 0 0 0 0 0.651112
1998 0 0 0 0 0.651112
1999 0 0 0 0 0.651112
2000 0.0673951 0.269549 0.0678706 0.404815 1.05593
2001 0 0 0 0 1.05593
2002 0 0 0 0 1.05593
2003 0 0 0 0 1.05593
2004 0 0 0 0 1.05593
2005 0 0 0 0 1.05593
2006 0.0882707 0.354584 0 0.442855 1.49878
2007 0.087846 0.351343 0.0880699 0.527259 2.02604
2008 0.078346 0.313347 0.0785101 0.470204 2.49624
2009 0.0880107 0.352002 0.0884623 0.528475 3.02472
2010 0.0611163 0.244437 0.0613169 0.36687 3.39159
2011 0.00949908 0.0379919 0.00952105 0.057012 3.4486
2012 0.00947729 0.0379047 0.00950724 0.0568893 3.50549
2013 0.0568489 0.227586 0.0363951 0.32083 3.82632
2014 0.087922 0.351647 0.0881981 0.527767 4.35409
2015 0 0 0 0 4.35409
2016 0.026886 0.107656 0 0.134542 4.48863
2017 0.0405246 0.16208 0.0405103 0.243114 4.73174
2018 0.0879131 0.351612 0.0688639 0.508389 5.24013
2019 0.0610893 0.244329 0.0612765 0.366695 5.60683

Area E: Bellingshausen Sea (PLUME FLOW)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.11561 0.462387 0.115502 0.693499 0.693499
1971 0.115674 0.462643 0.115631 0.693949 1.38745
1972 0.116599 0.474353 0 0.590952 1.9784
1973 0.115854 0.463361 0.115721 0.694935 2.67334
1974 0.115557 0.462175 0.115454 0.693187 3.36652
1975 0.11561 0.462387 0.115448 0.693445 4.05997
1976 0.1158 0.463148 0.115603 0.694551 4.75452
1977 0.115753 0.46296 0.115631 0.694344 5.44886
1978 0.116067 0.464212 0.119765 0.700044 6.14891
1979 0.115674 0.462643 0.11556 0.693877 6.84278
1980 0.115712 0.462793 0.11553 0.694035 7.53682
1981 0.115985 0.463885 0.119397 0.699266 8.23608
1982 0.115985 0.463885 0.116069 0.695938 8.93202
1983 0.115674 0.462643 0.11699 0.695308 9.62733
1984 0.191074 0.766956 0 0.95803 10.5854
1985 0.1158 0.463148 0.115673 0.694621 11.28
1986 0.1158 0.463148 0.116166 0.695114 11.9751
1987 0.116163 0.464599 0 0.580763 12.5559
1988 0.116163 0.468337 0 0.5845 13.1404
1989 0.11628 0.465064 0.120723 0.702067 13.8424
1990 0.115753 0.46296 0.115565 0.694278 14.5367
1991 0.117131 0.479144 0 0.596276 15.133
1992 0.161034 0.645671 0.115368 0.922073 16.0551
1993 0.115753 0.46296 0.115631 0.694344 16.7494
1994 0.2902 1.16269 0.221071 1.67397 18.4234
1995 0.190064 0.7622 0.115472 1.06774 19.4911
1996 0.1158 0.463148 0.115603 0.694551 20.1856
1997 0.115985 0.465018 0 0.581003 20.7667
1998 0.115712 0.462793 0.115669 0.694173 21.4608
1999 0.190053 0.76201 0.1155 1.06756 22.5284
2000 0.1158 0.463148 0.115757 0.694705 23.2231
2001 0.216467 0.87101 0.119397 1.20687 24.43
2002 0.115985 0.463885 0.119397 0.699266 25.1292
2003 0.115674 0.462643 0.1155 0.693817 25.823
2004 0.115985 0.463885 0.115942 0.695811 26.5189
2005 0.21722 0.869653 0.115425 1.2023 27.7212
2006 0.21596 0.866559 0.115425 1.19794 28.9191
2007 0.216179 0.866278 0.115502 1.19796 30.1171
2008 0.215621 0.862382 0.161086 1.23909 31.3562
2009 0.215736 0.862842 0.115472 1.19405 32.5502
2010 0.161029 0.644041 0.161169 0.966238 33.5164
2011 0.115557 0.462175 0.115404 0.693137 34.2096
2012 0.161713 0.647495 0.116565 0.925774 35.1354
2013 0.216078 0.865557 0.164178 1.24581 36.3812
2014 0.215933 0.865786 0.161458 1.24318 37.6243
2015 0.115854 0.463361 0.116061 0.695275 38.3196
2016 0.1158 0.463148 0.115757 0.694705 39.0143
2017 0.1158 0.463148 0.116166 0.695114 39.7094
2018 0.290277 1.16097 0.192244 1.6435 41.3529
2019 0.115854 0.463361 0.115811 0.695025 42.048

Area F: Weddell Sea (PLUME FLOW)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.104532 0.418542 0.067966 0.59104 0.59104
1971 0.0505927 0.202347 0.0505906 0.30353 0.894571
1972 0.0487957 0.195418 0.0488444 0.293058 1.18763
1973 0.0629007 0.251573 0.0628253 0.377299 1.56493
1974 0.0181787 0.0727064 0.0181603 0.109045 1.67397
1975 0.0181787 0.0727064 0.0181523 0.109037 1.78301
1976 0.018184 0.0727276 0.0181911 0.109103 1.89211
1977 0.041581 0.166305 0.0422012 0.250087 2.1422
1978 0.0679443 0.272016 0.0679042 0.407865 2.55007
1979 0.0182218 0.0728786 0.0182882 0.109389 2.65945
1980 0.0181787 0.0727064 0.0181612 0.109046 2.7685
1981 0.0417573 0.169161 0 0.210918 2.97942
1982 0.0181964 0.0727773 0.0182051 0.109179 3.0886
1983 0.104601 0.420935 0.0818436 0.607379 3.69598
1984 0.0319049 0.127403 0.0181838 0.177492 3.87347
1985 0.0811312 0.324487 0.0678249 0.473443 4.34691
1986 0.104516 0.41868 0.0913579 0.614554 4.96147
1987 0.0810894 0.32432 0.0810341 0.486443 5.44791
1988 0.0487693 0.195154 0.0489125 0.292836 5.74075
1989 0.104362 0.417398 0.104348 0.626108 6.36685
1990 0.048668 0.19465 0.0486369 0.291954 6.65881
1991 0.14109 0.486481 0.0678125 0.695383 7.35419
1992 0.0922056 0.36878 0.0923336 0.553319 7.90751
1993 0.0185969 0.0743806 0.0181713 0.111149 8.01866
1994 0.0491185 0.196464 0.0488376 0.29442 8.31308
1995 0.0815009 0.325976 0.0810117 0.488489 8.80157
1996 0.0722346 0.294061 0.048644 0.41494 9.21651
1997 0.0181787 0.0727064 0.018172 0.109057 9.32556
1998 0.0416549 0.0726261 0.0181358 0.132417 9.45798
1999 0.105494 0.430314 0.0550298 0.590837 10.0488
2000 0.0416445 0.175721 0.0181773 0.235543 10.2844
2001 0.0182038 0.0728069 0.0181971 0.109208 10.3936
2002 0.018184 0.0727276 0.0181773 0.109089 10.5027
2003 0.0181964 0.0727773 0.0181897 0.109163 10.6118
2004 0.0182328 0.0729227 0.0183048 0.10946 10.7213
2005 0.104555 0.41817 0.0811979 0.603922 11.3252
2006 0.0812586 0.325078 0.0681039 0.474441 11.7996
2007 0.105024 0.421543 0.0859974 0.612565 12.4122
2008 0.120968 0.484266 0.104699 0.709932 13.1221
2009 0.104546 0.41846 0.0914989 0.614505 13.7366
2010 0.104712 0.324398 0.0812173 0.510328 14.247
2011 0.104491 0.417914 0.104748 0.627153 14.8741
2012 0.0506311 0.202501 0.0507935 0.303925 15.1781
2013 0.0679455 0.271751 0.0680794 0.407776 15.5858
2014 0.0811968 0.325141 0.0681555 0.474493 16.0603
2015 0.041657 0.168903 0.0181897 0.22875 16.2891
2016 0.048863 0.196841 0.018226 0.26393 16.553
2017 0.081097 0.32435 0.0811961 0.486644 17.0396
2018 0.141224 0.56483 0.141859 0.847913 17.8876
2019 0.104475 0.41785 0.104727 0.627052 18.5146

Appendix B - Ice Melt

This is an appendix to: The Ghost Plumes - 12

Fig. 1 and Fig. 2, below, show the locations of the "areas" or "sectors" along the coast and grounding lines of Antarctica.

The graphs constructed from these computations are here.

Fig. 1 Antarctica Areas A-F and WOD zones

Fig. 2 Antarctica Areas A-F

In the HTML tables below:

"epi" means epipelagic depth level
"meso" means mesopelagic depth level
"bathy" means bathypelagic depth level
"yr" means the sum of epi, meso, and bathy for that year
"total" means the cumulative total for all years


Area A: Indian Ocean (ICE MELT)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.0659499 0.27093 0.0230156 0.359895 0.359895
1971 0.147458 0.482499 0.0898152 0.719771 1.07967
1972 0.0396636 0.1587 0.0397547 0.238118 1.31778
1973 0.089913 0.359679 0.0899691 0.539561 1.85735
1974 0.107946 0.431736 0.107962 0.647644 2.50499
1975 0.0971608 0.391807 0.0501813 0.539149 3.04414
1976 0.0630223 0.258552 0.0234419 0.345016 3.38915
1977 0.077213 0.309083 0.0771628 0.463459 3.85261
1978 0.0396476 0.158572 0.0396219 0.237842 4.09046
1979 0.147701 0.496875 0.0843581 0.728935 4.81939
1980 0.120792 0.483459 0.12272 0.72697 5.54636
1981 0.147355 0.58935 0.147656 0.884361 6.43072
1982 0.123667 0.494698 0.123606 0.741971 7.17269
1983 0.147257 0.589005 0.147239 0.883501 8.05619
1984 0.151475 0.615999 0.131701 0.899175 8.95537
1985 0.167516 0.670089 0.147452 0.985058 9.94042
1986 0.0704217 0.200153 0.050004 0.320579 10.261
1987 0.167615 0.589094 0.14715 0.903859 11.1649
1988 0.0663434 0.265343 0.039197 0.370883 11.5357
1989 0.0658308 0.26336 0.0658788 0.39507 11.9308
1990 0.147457 0.589847 0.147528 0.884833 12.8156
1991 0.0899788 0.360008 0.0470089 0.496996 13.3126
1992 0.147359 0.589447 0.11709 0.853895 14.1665
1993 0.14761 0.599642 0.0977473 0.845 15.0115
1994 0.147266 0.589552 0.147163 0.883981 15.8955
1995 0.0627982 0.251163 0.0628085 0.37677 16.2723
1996 0.147297 0.58912 0.147111 0.883528 17.1558
1997 0.0501458 0.20056 0.0506605 0.301366 17.4572
1998 0.097146 0.388537 0.0972342 0.582918 18.0401
1999 0.0162107 0.158628 0.0396848 0.214523 18.2546
2000 0.0230234 0.0920828 0.0230139 0.13812 18.3927
2001 0.0972024 0.388764 0.0392437 0.52521 18.918
2002 0.0392852 0.157212 0.0230167 0.219514 19.1375
2003 0.116616 0.46641 0.11662 0.699646 19.8371
2004 0.14748 0.590509 0.12068 0.858669 20.6958
2005 0.120751 0.482949 0.0900475 0.693748 21.3895
2006 0.147184 0.588669 0.147028 0.882881 22.2724
2007 0.147381 0.589455 0.147511 0.884347 23.1568
2008 0.124182 0.496901 0.105373 0.726455 23.8832
2009 0.147347 0.58932 0.147686 0.884353 24.7676
2010 0.120735 0.48279 0.12098 0.724505 25.4921
2011 0.147398 0.589525 0.14772 0.884643 26.3767
2012 0.147312 0.589181 0.147634 0.884128 27.2608
2013 0.147287 0.58908 0.1471 0.883467 28.1443
2014 0.14743 0.58965 0.14781 0.88489 29.0292
2015 0.147356 0.589355 0.147568 0.884279 29.9135
2016 0.147391 0.590086 0.120706 0.858182 30.7717
2017 0.147385 0.58947 0.147743 0.884598 31.6563
2018 0.190207 0.76074 0.190793 1.14174 32.798
2019 0.147376 0.589437 0.147495 0.884308 33.6823


Antarctica, All Areas Combined (ICE MELT)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.578579 2.12586 0.330787 3.03523 3.03523
1971 0.598737 2.28741 0.54116 3.4273 6.46253
1972 0.370871 1.49619 0.181946 2.04901 8.51154
1973 0.396617 1.57132 0.349152 2.31709 10.8286
1974 0.433879 1.74554 0.306182 2.4856 13.3142
1975 0.249036 0.999238 0.2019 1.45017 14.7644
1976 0.397934 1.59907 0.223145 2.22015 16.9846
1977 0.343195 1.49192 0.320688 2.1558 19.1404
1978 0.491502 2.07054 0.407292 2.96934 22.1097
1979 0.56481 2.28611 0.287422 3.13834 25.248
1980 0.49642 1.55281 0.33524 2.38447 27.6325
1981 0.583498 2.34362 0.410187 3.33731 30.9698
1982 0.437612 1.75161 0.331546 2.52076 33.4906
1983 0.685123 2.74673 0.521104 3.95296 37.4435
1984 0.654178 2.63454 0.369505 3.65822 41.1018
1985 0.628285 2.51461 0.461744 3.60464 44.7064
1986 0.542681 2.09376 0.299626 2.93607 47.6425
1987 0.61497 2.38491 0.358092 3.35797 51.0004
1988 0.54434 2.18151 0.284487 3.01034 54.0108
1989 0.385794 1.5439 0.378901 2.30859 56.3194
1990 0.572642 2.29125 0.447194 3.31108 59.6305
1991 0.425041 1.47287 0.137736 2.03564 61.6661
1992 0.668627 2.67769 0.546735 3.89305 65.5592
1993 0.44947 1.80694 0.399028 2.65544 68.2146
1994 0.962891 3.85416 0.77999 5.59705 73.8116
1995 0.627853 2.51352 0.541083 3.68245 77.4941
1996 0.620736 2.48828 0.596055 3.70507 81.1992
1997 0.402108 1.60947 0.283816 2.29539 83.4946
1998 0.495538 1.88062 0.356634 2.73279 86.2273
1999 0.436656 1.68362 0.244783 2.36506 88.5924
2000 0.487688 1.96207 0.336677 2.78644 91.3788
2001 0.474464 1.90329 0.311734 2.68949 94.0683
2002 0.341007 1.36396 0.284112 1.98908 96.0574
2003 0.533217 2.13262 0.42522 3.09106 99.1485
2004 0.564102 2.2568 0.537461 3.35836 102.507
2005 0.67511 2.70121 0.509114 3.88543 106.392
2006 0.749882 3.00398 0.505065 4.25893 110.651
2007 0.944845 3.78235 0.810721 5.53792 116.189
2008 0.915758 3.66333 0.712959 5.29204 121.481
2009 0.882124 3.52941 0.653159 5.0647 126.546
2010 0.842002 3.26673 0.691854 4.80059 131.346
2011 0.738686 2.95443 0.733288 4.4264 135.773
2012 0.658496 2.63447 0.610487 3.90346 139.676
2013 0.809713 3.24398 0.623567 4.67726 144.354
2014 0.862991 3.45433 0.785983 5.10331 149.457
2015 0.565324 2.26351 0.54088 3.36971 152.827
2016 0.710125 2.8459 0.513844 4.06987 156.896
2017 0.759801 3.04944 0.652675 4.46191 161.358
2018 1.10933 4.44277 0.876401 6.4285 167.787
2019 0.806659 3.22626 0.807026 4.83995 172.627

Area B: Western Pacific Ocean (ICE MELT)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.159543 0.438875 0.109626 0.708045 0.708045
1971 0.156736 0.626873 0.156694 0.940303 1.64835
1972 0.0611624 0.248413 0.0419105 0.351486 1.99983
1973 0.0839704 0.344735 0.0420475 0.470753 2.47059
1974 0.0710976 0.284665 0.0523987 0.408161 2.87875
1975 0 0 0 0 2.87875
1976 0.0470237 0.188073 0.0477504 0.282848 3.1616
1977 0.0945374 0.378982 0.0715177 0.545037 3.70663
1978 0.138012 0.553055 0.0434296 0.734496 4.44113
1979 0.157255 0.630726 0.0569512 0.844932 5.28606
1980 0.1152 0.460956 0.0665699 0.642727 5.92879
1981 0.137928 0.55165 0.119971 0.809549 6.73834
1982 0.0539083 0.215967 0.0553271 0.325202 7.06354
1983 0.156827 0.627235 0.157489 0.941551 8.00509
1984 0.118919 0.480266 0.0975655 0.69675 8.70184
1985 0.104989 0.420588 0.0866932 0.61227 9.31411
1986 0.118987 0.477958 0.023975 0.62092 9.93503
1987 0.118784 0.475197 0.121898 0.715878 10.6509
1988 0.156807 0.627334 0.157135 0.941275 11.5922
1989 0.0621784 0.248856 0.0625246 0.373559 11.9657
1990 0.133896 0.535921 0.116402 0.78622 12.752
1991 0.0561834 0.0699827 0.0174898 0.143656 12.8956
1992 0.132842 0.532809 0.0961781 0.76183 13.6574
1993 0.156762 0.626974 0.156774 0.940511 14.598
1994 0.156813 0.627033 0.156636 0.940482 15.5384
1995 0.156763 0.62698 0.156692 0.940435 16.4789
1996 0.156643 0.626501 0.156458 0.939603 17.4185
1997 0.093472 0.373845 0.093547 0.560864 17.9793
1998 0.114626 0.45845 0.114891 0.687966 18.6673
1999 0.101255 0.237283 0.0209266 0.359465 19.0268
2000 0.0239804 0.0959105 0.0239724 0.143863 19.1706
2001 0.123817 0.495209 0.123889 0.742915 19.9136
2002 0.15682 0.627206 0.112516 0.896542 20.8101
2003 0.156787 0.627074 0.156787 0.940647 21.7507
2004 0.156723 0.62682 0.156816 0.940359 22.6911
2005 0.133683 0.534671 0.133658 0.802012 23.4931
2006 0.156918 0.6276 0.1583 0.942818 24.4359
2007 0.156846 0.627311 0.157103 0.941261 25.3772
2008 0.15674 0.626887 0.156801 0.940428 26.3176
2009 0.156723 0.62682 0.157062 0.940606 27.2582
2010 0.15691 0.627565 0.157302 0.941777 28.2
2011 0.156733 0.626859 0.156843 0.940436 29.1404
2012 0.15667 0.626608 0.156561 0.939839 30.0803
2013 0.156776 0.627033 0.156795 0.940604 31.0209
2014 0.156718 0.626798 0.1568 0.940315 31.9612
2015 0.156782 0.627053 0.157003 0.940838 32.902
2016 0.156783 0.627059 0.157079 0.940921 33.843
2017 0.156776 0.627029 0.157075 0.94088 34.7838
2018 0.158875 0.635428 0.158906 0.953209 35.737
2019 0.15671 0.626765 0.156567 0.940042 36.6771

Area C: Ross Sea (ICE MELT)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.115332 0.464653 0 0.579985 0.579985
1971 0.114975 0.459847 0.115131 0.689953 1.26994
1972 0.0914184 0.365726 0.0475287 0.504673 1.77461
1973 0.00750145 0.00607872 0.00152221 0.0151024 1.78971
1974 0.1104 0.45147 0.00151731 0.563387 2.3531
1975 0.00738348 0.0295305 0.00743058 0.0443445 2.39745
1976 0.143185 0.573698 0.00745522 0.724338 3.12178
1977 0.00152289 0.124252 0.00154832 0.127323 3.24911
1978 0.115111 0.563789 0.121557 0.800457 4.04956
1979 0.115245 0.580141 0.0015568 0.696943 4.74651
1980 0.115827 0.0300564 0.00156354 0.147447 4.89395
1981 0.127853 0.518932 0.013613 0.660398 5.55435
1982 0.115122 0.461347 0.00759729 0.584066 6.13842
1983 0.143142 0.57623 0.00163545 0.721007 6.85942
1984 0.142967 0.572363 0.1206 0.83593 7.69535
1985 0.143094 0.573289 0.029421 0.745804 8.44116
1986 0.11533 0.463279 0.00152127 0.580131 9.02129
1987 0.115538 0.468582 0.00152749 0.585647 9.60694
1988 0.143063 0.572267 0.0353294 0.750659 10.3576
1989 0.019492 0.0786252 0.00742002 0.105537 10.4631
1990 0.113713 0.455261 0.0059267 0.5749 11.038
1991 0 0 0 0 11.038
1992 0.114927 0.45983 0.109149 0.683906 11.7219
1993 0 0 0 0 11.7219
1994 0.197413 0.78999 0.0897812 1.07718 12.7991
1995 0.115001 0.460142 0.10938 0.684523 13.4836
1996 0.113718 0.45487 0.115099 0.683686 14.1673
1997 0.113594 0.454321 0.119983 0.687897 14.8552
1998 0.11381 0.455378 0 0.569188 15.4244
1999 0 0 0 0 15.4244
2000 0.197857 0.792986 0.071741 1.06258 16.487
2001 0 0 0 0 16.487
2002 0 0 0 0 16.487
2003 0.115234 0.460883 0.00742942 0.583547 17.0705
2004 0.114943 0.45972 0.11498 0.689642 17.7602
2005 0.0731597 0.292739 0.0730566 0.438956 18.1991
2006 0.0294509 0.11779 0.00152633 0.148767 18.3479
2007 0.198845 0.795286 0.193372 1.1875 19.5354
2008 0.186707 0.746742 0.0789464 1.0124 20.5478
2009 0.137098 0.549306 0.0293422 0.715746 21.2636
2010 0.211351 0.846472 0.0855728 1.1434 22.407
2011 0.186644 0.746516 0.180677 1.11384 23.5208
2012 0.114946 0.459752 0.115276 0.689974 24.2108
2013 0.137508 0.553786 0.0295273 0.720821 24.9316
2014 0.142987 0.571905 0.138136 0.853028 25.7846
2015 0.0910749 0.364257 0.0913174 0.54665 26.3313
2016 0.199079 0.799696 0.0913564 1.09013 27.4214
2017 0.199225 0.807393 0.0909552 1.09757 28.519
2018 0.19928 0.802989 0.0914963 1.09377 29.6127
2019 0.198642 0.794476 0.198605 1.19172 30.8045

Area D: Amundsen Sea (ICE MELT)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0 0 0 0 0
1971 0 0 0 0 0
1972 0 0 0 0 0
1973 0.0221772 0.0886986 0.022783 0.133659 0.133659
1974 0 0 0 0 0.133659
1975 0 0 0 0 0.133659
1976 0 0 0 0 0.133659
1977 0 0 0 0 0.133659
1978 0 0 0 0 0.133659
1979 0 0 0 0 0.133659
1980 0 0 0 0 0.133659
1981 0 0 0 0 0.133659
1982 0 0 0 0 0.133659
1983 0 0 0 0 0.133659
1984 0 0 0 0 0.133659
1985 0 0 0 0 0.133659
1986 0 0 0 0 0.133659
1987 0 0 0 0 0.133659
1988 0 0 0 0 0.133659
1989 0 0 0 0 0.133659
1990 0 0 0 0 0.133659
1991 0 0 0 0 0.133659
1992 0 0 0 0 0.133659
1993 0 0 0 0 0.133659
1994 0.0949357 0.379699 0.0949081 0.569542 0.703201
1995 0 0 0 0 0.703201
1996 0 0 0 0 0.703201
1997 0 0 0 0 0.703201
1998 0 0 0 0 0.703201
1999 0 0 0 0 0.703201
2000 0.0727867 0.291113 0.0733003 0.4372 1.1404
2001 0 0 0 0 1.1404
2002 0 0 0 0 1.1404
2003 0 0 0 0 1.1404
2004 0 0 0 0 1.1404
2005 0 0 0 0 1.1404
2006 0.0953324 0.382951 0 0.478283 1.61868
2007 0.0948737 0.379451 0.0951155 0.56944 2.18812
2008 0.0846137 0.338415 0.0847909 0.50782 2.69594
2009 0.0950515 0.380162 0.0955393 0.570753 3.2667
2010 0.0660056 0.263992 0.0662222 0.396219 3.66292
2011 0.010259 0.0410312 0.0102827 0.061573 3.72449
2012 0.0102355 0.0409371 0.0102678 0.0614404 3.78593
2013 0.0613968 0.245793 0.0393067 0.346497 4.13243
2014 0.0949558 0.379779 0.0952539 0.569989 4.70242
2015 0 0 0 0 4.70242
2016 0.0290369 0.116268 0 0.145305 4.84772
2017 0.0437666 0.175046 0.0437511 0.262564 5.11028
2018 0.0949462 0.379741 0.074373 0.54906 5.65934
2019 0.0659765 0.263875 0.0661786 0.39603 6.05537

Area E: Bellingshausen Sea (ICE MELT)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.124859 0.499378 0.124742 0.748979 0.748979
1971 0.124928 0.499655 0.124882 0.749465 1.49844
1972 0.125927 0.512301 0 0.638228 2.13667
1973 0.125122 0.500429 0.124979 0.75053 2.8872
1974 0.124802 0.49915 0.124691 0.748642 3.63584
1975 0.124859 0.499378 0.124683 0.74892 4.38476
1976 0.125064 0.500199 0.124851 0.750115 5.13488
1977 0.125014 0.499996 0.124881 0.749892 5.88477
1978 0.125352 0.501349 0.129346 0.756047 6.64082
1979 0.124928 0.499655 0.124804 0.749387 7.39021
1980 0.124969 0.499816 0.124773 0.749558 8.13976
1981 0.125263 0.500995 0.128948 0.755207 8.89497
1982 0.125263 0.500995 0.125354 0.751613 9.64658
1983 0.124928 0.499655 0.126349 0.750932 10.3975
1984 0.206359 0.828313 0 1.03467 11.4322
1985 0.125064 0.500199 0.124927 0.750191 12.1824
1986 0.125064 0.500199 0.12546 0.750723 12.9331
1987 0.125456 0.501767 0 0.627224 13.5603
1988 0.125456 0.505804 0 0.63126 14.1916
1989 0.125582 0.502269 0.130381 0.758232 14.9498
1990 0.125014 0.499996 0.12481 0.74982 15.6996
1991 0.126502 0.517476 0 0.643978 16.3436
1992 0.173917 0.697324 0.124597 0.995839 17.3395
1993 0.125014 0.499996 0.124881 0.749892 18.0893
1994 0.313416 1.25571 0.238757 1.80788 19.8972
1995 0.20527 0.823176 0.12471 1.15316 21.0504
1996 0.125064 0.500199 0.124851 0.750115 21.8005
1997 0.125263 0.50222 0 0.627483 22.428
1998 0.124969 0.499816 0.124922 0.749707 23.1777
1999 0.205257 0.822971 0.12474 1.15297 24.3307
2000 0.125064 0.500199 0.125018 0.750282 25.0809
2001 0.233784 0.94069 0.128948 1.30342 26.3844
2002 0.125263 0.500995 0.128948 0.755207 27.1396
2003 0.124928 0.499655 0.12474 0.749323 27.8889
2004 0.125263 0.500995 0.125217 0.751476 28.6404
2005 0.234597 0.939225 0.124659 1.29848 29.9389
2006 0.233236 0.935884 0.124659 1.29378 31.2326
2007 0.233474 0.93558 0.124742 1.2938 32.5264
2008 0.23287 0.931373 0.173973 1.33822 33.8646
2009 0.232995 0.93187 0.12471 1.28957 35.1542
2010 0.173911 0.695564 0.174062 1.04354 36.1978
2011 0.124802 0.49915 0.124637 0.748588 36.9463
2012 0.17465 0.699295 0.125891 0.999836 37.9462
2013 0.233364 0.934801 0.177312 1.34548 39.2917
2014 0.233208 0.935049 0.174375 1.34263 40.6343
2015 0.125122 0.500429 0.125346 0.750898 41.3852
2016 0.125064 0.500199 0.125018 0.750282 42.1355
2017 0.125064 0.500199 0.12546 0.750723 42.8862
2018 0.3135 1.25385 0.207624 1.77498 44.6612
2019 0.125122 0.500429 0.125076 0.750627 45.4118

Area F: Weddell Sea (ICE MELT)
year epi_flow meso_flow bathy_flow yr_flow total_flow
1970 0.112895 0.452025 0.0734033 0.638323 0.638323
1971 0.0546401 0.218535 0.0546379 0.327813 0.966136
1972 0.0526994 0.211051 0.0527519 0.316503 1.28264
1973 0.0679327 0.271699 0.0678513 0.407483 1.69012
1974 0.019633 0.0785229 0.0196132 0.117769 1.80789
1975 0.019633 0.0785229 0.0196045 0.11776 1.92565
1976 0.0196387 0.0785458 0.0196464 0.117831 2.04348
1977 0.0449075 0.179609 0.0455773 0.270094 2.31358
1978 0.0733798 0.293777 0.0733365 0.440494 2.75407
1979 0.0196795 0.0787089 0.0197513 0.11814 2.87221
1980 0.019633 0.0785229 0.0196141 0.11777 2.98998
1981 0.0450978 0.182694 0 0.227792 3.21777
1982 0.0196522 0.0785995 0.0196615 0.117913 3.33569
1983 0.112969 0.45461 0.0883911 0.65597 3.99165
1984 0.0344573 0.137596 0.0196385 0.191691 4.18335
1985 0.0876217 0.350446 0.0732509 0.511319 4.69467
1986 0.112877 0.452175 0.0986665 0.663718 5.35838
1987 0.0875766 0.350266 0.0875168 0.525359 5.88374
1988 0.0526708 0.210766 0.0528256 0.316263 6.2
1989 0.112711 0.45079 0.112696 0.676196 6.8762
1990 0.0525615 0.210221 0.0525278 0.315311 7.19151
1991 0.152377 0.525399 0.0732375 0.751014 7.94253
1992 0.0995821 0.398282 0.0997202 0.597584 8.54011
1993 0.0200846 0.080331 0.019625 0.120041 8.66015
1994 0.053048 0.212182 0.0527446 0.317974 8.97813
1995 0.088021 0.352054 0.0874927 0.527568 9.50569
1996 0.0780134 0.317586 0.0525355 0.448135 9.95383
1997 0.019633 0.0785229 0.0196257 0.117782 10.0716
1998 0.0449873 0.0784362 0.0195867 0.14301 10.2146
1999 0.113933 0.464739 0.0594321 0.638104 10.8527
2000 0.0449761 0.189779 0.0196314 0.254386 11.1071
2001 0.0196601 0.0786314 0.0196528 0.117944 11.2251
2002 0.0196387 0.0785458 0.0196314 0.117816 11.3429
2003 0.0196522 0.0785995 0.0196449 0.117897 11.4608
2004 0.0196914 0.0787565 0.0197692 0.118217 11.579
2005 0.112919 0.451623 0.0876937 0.652236 12.2312
2006 0.0877593 0.351084 0.0735522 0.512396 12.7436
2007 0.113426 0.455266 0.0928772 0.66157 13.4052
2008 0.130645 0.523007 0.113074 0.766727 14.1719
2009 0.112909 0.451937 0.0988189 0.663665 14.8356
2010 0.113089 0.35035 0.0877147 0.551154 15.3867
2011 0.11285 0.451347 0.113128 0.677325 16.0641
2012 0.0546816 0.218701 0.0548569 0.328239 16.3923
2013 0.0733812 0.293491 0.0735258 0.440398 16.8327
2014 0.0876925 0.351152 0.073608 0.512452 17.3451
2015 0.0449895 0.182416 0.0196449 0.24705 17.5922
2016 0.052772 0.212588 0.0196841 0.285044 17.8772
2017 0.0875848 0.350298 0.0876918 0.525575 18.4028
2018 0.152522 0.610016 0.153208 0.915746 19.3186
2019 0.112833 0.451278 0.113105 0.677216 19.9958