Monday, October 24, 2022

On The Origin Of The Home Of COVID-19 - 34

115 Bias Lane, Duck, NC 27949
I. Leave Bias
Outside of
The Lab

"Felidae ... is a family of mammals in the order Carnivora, colloquially referred to as cats ... The family Felidae is part of the Feliformia, a suborder that diverged probably about 50.6 to 35 million years ago into several families. The Felidae and the Asiatic linsangs are considered a sister group, which split about 35.2 to 31.9 million years ago" (Wikipedia).

Historically, the scientific community has fingered cats as the main player in the Toxoplasma Gondii ("Toxo") parasite development.

It is an unsupportable bias (Merchants of doubt in the free-ranging cat conflict; cf. CDC "people are more likely to get [toxoplasmosis] from eating raw meat or from gardening [than from cats]".

Actually, the likelihood that one will be infected with Toxo by a dog is more scientific: 

"Possibly all mammals, including humans, can become infected with Toxoplasma ... Ironically, contact with dogs is more of a risk factor for becoming infected with Toxoplasma than contact with cats ... most infections in the United States and Europe among adults are probably acquired from undercooked meat. The especially high seropositive rate in France (up to 90%) is likely due to a cultural predilection for lightly cooked or raw meat. Mutton and pork are more common sources than beef. There have also been a few isolated reports of Toxoplasma being transmitted via tachyzoites in unpasteurised goat's milk."

(Apicomplexa, Tulane Univ., emphasis added). The protozoa were on the Earth within many biological creatures hundreds of millions of years before placental mammals, such as cats and dogs, came into existence.

So scientists with cat bias leave out a substantial history, that of protozoa, to which Toxo belongs:

"Protists were a dominant form of life on Earth 1.5 billion years ago. While protozoans evolved early and have survived to the present day as unicellular organisms, they have undoubtedly undergone considerable evolutionary change." (Encyclopedia Britannica). 

"The Protozoa are considered to be a sub-kingdom of the kingdom Protista, although in the classical system they were placed in the kingdom Animalia. More than 50,000 species have been described, most of which are free-living organisms; protozoa are found in almost every possible habitat. The fossil record in the form of shells in sedimentary rocks shows that protozoa were present in the Pre-cambrian era ... Toxoplasma gondii, a very common protozoan parasite, usually causes a rather mild initial illness followed by a long-lasting latent infection." (Medical Microbiology. 4th edition, Chap. 77) .

Note that "Pre-cambrian" would be prior to 538.8 million years ago (Wikipedia, Cambrian), so Toxo, as I "said", was around long before cats were.

Cats are placental mammals that originated following the Fifth Mass Extinction ~65 mya (Science Daily), ~473.8 mya after Toxo's gang, protozoa, emerged.

So, we can dispense with the modern myth that Toxo is from the catosphere (I am only saying that because "dog started it"), and instead let's get down to brass tacks:

"The principal driver of zoonotic diseases (such as the virus Sars-Cov-2, which spread from animals to humans) is industrial animal agriculture"

(On The Origin Of The Home Of COVID-19, quoting The Guardian & writers Jan Dutkiewicz and Troy Vettese, emphasis added). Cats are not a favorite food in the USA.

In the USA pork, beef, chicken, and others in the "mass production of animals for food" industry are the favs, and the clonal type Toxo in mammals within that food producing realm can spread the infection without cats:

"Furthermore, these clonal types all exhibit the ability to be transmitted via a direct oral route between intermediate hosts, which may have not been a biological feature of the ancestral Toxoplasma or other closely related species like Neospora ... This acquisition of direct oral infectivity combined with domestication of animals could promote a rapid, and primarily asexual, expansion of Toxoplasma." 

(ibid, Apicomplexa). The asexual spread of Toxo means "without cats" being a part of it:

"The global predominance of three clonal Toxoplasma gondii lineages suggests that they are endowed with an exceptional trait responsible for their current parasitism of nearly all warm-blooded vertebrates. Genetic polymorphism analyses indicate that these clonal lineages emerged within the last 10,000 years after a single genetic cross. Comparison with ancient strains (∼1 million years) suggests that the success of the clonal lineages resulted from the concurrent acquisition of direct oral infectivity. This key adaptation circumvented sexual recombination, simultaneously promoting transmission through successive hosts, hence leading to clonal expansion. Thus, changes in complex life cycles can occur rapidly and can profoundly influence pathogenicity."

(Expansion of Toxoplasma Via Enhanced Oral Transmission, emphasis added). So, since "toxoplasmosis remains one of the leading single causes of death related to foodborne illness in the United States", we need to "follow the money food" (Understanding Toxoplasmosis in the United States Through “Large Data” Analyses, emphasis added).

II. That's Not All Folks

I am exploring the possibility that Toxo is the home microbe host of corona viruses (The Coronaviradae, 2, 3, 4, 5, 6, 7) to which SARS-CoV-2 belongs:

 "Viruses are not living things. Viruses are complicated assemblies of molecules, including proteins, nucleic acids, lipids, and carbohydrates, but on their own they can do nothing until they enter a living cell [e.g. a protozoan eucaryote Toxo]. Without cells [e.g. a protozoan eucaryote Toxo], viruses would not be able to multiply. Therefore, viruses are not living things.

When a virus encounters a cell [e.g. a protozoan eucaryote Toxo], a series of chemical reactions occur that lead to the production of new viruses. These steps are completely passive, that is, they are predefined by the nature of the molecules that comprise the virus particle. Viruses don’t actually ‘do’ anything. Often scientists and non-scientists alike ascribe actions to viruses such as employing, displaying, destroying, evading, exploiting, and so on. These terms are incorrect because viruses are passive, completely at the mercy of their environment."

(Virology Blog, emphasis added). As I have pointed out repeatedly in this Dredd Blog series, SARS-CoV-2 (like all viruses) must have a microbial cell as its host.

Toxo is quite able to host viruses and it is not limited to the cat bias methodology of reproduction, i.e. as pointed out above, Toxo can be spread without sexual dynamics (cats need not be involved at all).

III. Healthy People Can Have Toxo In Their Blood

Studies of blood donation samples indicate that Toxo is a main player in other ways "The most frequent bacterium was Escherichia coli ... and the most prevalent parasite was Toxoplasma gondii" (Metagenomic analysis and identification of emerging pathogens in blood from healthy donors).

We all know that blood and food are ubiquitous and don't need cats either, eh?

IV. How Low Can Society Go?

In a paper Effects of Latent Toxoplasmosis on Political Beliefs and Values, 2022, by authors from a NATO, European Union country, Czechia, asks an interest-grabbing question.

I prepared a long list of other scientific papers cited in that paper, along with the country of origin of those cited papers (in Appendix One).

The paper and those it cites to indicate clearly that there is good reason for the ongoing research to intensely focus on the issue of Taxoplasmosis:

"Toxoplasma gondii is frequently described as one of the most successful parasites, due to its ubiquitous distribution, the wide range of host species it is able to infect and its high prevalence rates around the world."

(ibid, Apicomplexa). That could be explored further, including:  Can the Common Brain Parasite, Toxoplasma Gondii, Influence Human Culture?, Epigenetic Manipulation of Psychiatric Behavioral Disorders Induced by Toxoplasma gondii.

Regular readers may remember that Dredd Blog has asked these questions for about a decade (see How To Identify The Despotic Minority - 17, quoting Hypothesis: The Cultural Amygdala, 2012).

V. Closing Comments

The post How To Identify The Despotic Minority - 17 quotes from the, at one time, most quoted historian of that time.

A historian who points out that 26 prior civilizations have committed suicide.

Something has to cause dementia in the mind, i.e. suicidal tendencies or risk aversion on a massive scale, for that to happen.

Our current civilization, the first one to be able to destroy all human life on Earth, needs to get busy getting rid of whatever is leading us in that direction.

The next post in this series is here, the previous post in this series is here.



Appendix One

This is an appendix to: On The Origin Of The Home Of COVID-19 - 34


  • Abdulai-Saiku S., Tong W. H., Vyas A. (2021). Behavioral Manipulation by Toxoplasma gondii: Does Brain Residence Matter? Trends Parasitol. 37 (5), 381–390. doi: 10.1016/j.pt.2020.12.006 [PubMed] [CrossRef] []{China; brain cysts are "merely incidental to the behavioral change, without a necessary or sufficient role"}
  • Acquarone M., Poleto A., Perozzo A. F., Goncalves P., Panizzutti R., Menezes J., et al.. (2021). Social Preference Is Maintained in Mice With Impaired Startle Reflex and Glutamate/D-Serine Imbalance Induced by Chronic Cerebral Toxoplasmosis. Sci. Rep. 11 (1), 14029. doi:  10.1038/s41598-021-93504-1 [PMC free article] [PubMed] [CrossRef] []{Brazil; "Besides schizophrenia, other neuropsychiatric disorders and neurological diseases have been correlated to toxoplasmosis, such as bipolar disorder, obsessive–compulsive disorder, aggressive and suicidal behavior, but also Parkinson’s and Alzheimer’s disease."}
  • Afonso C., Paixao V. B., Costa R. M. (2012). Chronic Toxoplasma Infection Modifies the Structure and the Risk of Host Behavior. PloS One 7 (3), e32489. doi:  10.1371/journal.pone.0032489 [PMC free article] [PubMed] [CrossRef] []{Portugal,France; }
  • Afonso C., Paixao V. B., Klaus A., Lunghi M., Piro F., Emiliani C., et al.. (2017). Toxoplasma-Induced Changes in Host Risk Behaviour Are Independent of Parasite-Derived AaaH2 Tyrosine Hydroxylase. Sci. Rep. 7 (1), 13822. doi:  10.1038/s41598-017-13229-y [PMC free article] [PubMed] [CrossRef] [] {France;}
  • Akgul O., Demirel O. F., Aksoy P. C., Tanriover A. E., Uysal N., Bulu E., et al.. (2021). Toxoplasma Gondii Infection by Serological and Molecular Methods in Schizophrenia Patients With and Without Suicide Attempts: An Age-Sex-Matched Case-Control Study. Int. J. Clin. Pract. 75 (8), e14449. doi:  10.1111/ijcp.14449 [PubMed] [CrossRef] []{Turkey;}
  • Al M. J., Hussien N. A., Al M. F. (2021). Maternal Toxoplasmosis and the Risk of Childhood Autism: Serological and Molecular Small-Scale Studies. BMC Pediatr. 21 (1), 133. doi:  10.1186/s12887-021-02604-4 [PMC free article] [PubMed] [CrossRef] []{Saudi Arabia;}
  • Alsaady I., Tedford E., Alsaad M., Bristow G., Kohli S., Murray M., et al.. (2019). Downregulation of the Central Noradrenergic System by Toxoplasma Gondii Infection. Infect. Immun. 87 (2), e00789–18. doi:  10.1128/IAI.00789-18 [PMC free article] [PubMed] [CrossRef] []{United Kingdom, Saudi Arabia;}
  • Barbosa J. L., Bela S. R., Ricci M. F., Noviello M., Cartelle C. T., Pinheiro B. V., et al. (2020). Spontaneous T. Gondii Neuronal Encystment Induces Structural Neuritic Network Impairment Associated With Changes of Tyrosine Hydroxilase Expression. Neurosci. Lett. 718, 134721. doi:  10.1016/j.neulet.2019.134721 [PubMed] [CrossRef] [] {Brazil;}
  • Bayani M., Riahi S. M., Bazrafshan N., Ray G. H., Rostami A. (2019). Toxoplasma Gondii Infection and Risk of Parkinson and Alzheimer Diseases: A Systematic Review and Meta-Analysis on Observational Studies. Acta Trop. 196, 165–171. doi:  10.1016/j.actatropica.2019.05.015 [PubMed] [CrossRef] []{USA, Iran;}
  • Berdoy M., Webster J. P., Macdonald D. W. (2000). Fatal Attraction in Rats Infected With Toxoplasma Gondii. Proc. Biol. Sci. 267 (1452), 1591–1594. doi:  10.1098/rspb.2000.1182 [PMC free article] [PubMed] [CrossRef] []{United Kingdom;}
  • Bhandage A. K., Kanatani S., Barragan A. (2019). Toxoplasma-Induced Hypermigration of Primary Cortical Microglia Implicates GABAergic Signaling. Front. Cell. Infect. Microbiol. 9, 73. doi:  10.3389/fcimb.2019.00073 [PMC free article] [PubMed] [CrossRef] []{Sweden, France, USA; }
  • Berenreiterova M., Flegr J., Kubena A. A., Nemec P. (2011). The Distribution of Toxoplasma gondii Cysts in the Brain of a Mouse With LatentTtoxoplasmosis: Implications for the Behavioral Manipulation Hypothesis. PLoS One 6 (12), e28925. doi: 10.1371/journal.pone.0028925 [PMC free article] [PubMed] [CrossRef] []{Czech Republic, Israel; }
  • Blanchard N., Dunay I. R., Schluter D. (2015). Persistence of Toxoplasma Gondii in the Central Nervous System: A Fine-Tuned Balance Between the Parasite, the Brain and the Immune System. Parasite Immunol. 37 (3), 150–158. doi:  10.1111/pim.12173 [PubMed] [CrossRef] []{Swizerland, Canada; }
  • Boillat M., Hammoudi P. M., Dogga S. K., Pages S., Goubran M., Rodriguez I., et al.. (2020). Neuroinflammation-Associated Aspecific Manipulation of Mouse Predator Fear by Toxoplasma Gondii. Cell Rep. 30 (2), 320–334. doi:  10.1016/j.celrep.2019.12.019 [PMC free article] [PubMed] [CrossRef] []{Swizerland, Canada;}
  • Braun L., Brenier-Pinchart M. P., Hammoudi P. M., Cannella D., Kieffer-Jaquinod S., Vollaire J., et al.. (2019). The Toxoplasma Effector TEEGR Promotes Parasite Persistence by Modulating NF-kappaB Signalling via EZH2. Nat. Microbiol. 4 (7), 1208–1220. doi:  10.1038/s41564-019-0431-8 [PMC free article] [PubMed] [CrossRef] []{France; }
  • Brooks J. M., Carrillo G. L., Su J., Lindsay D. S., Fox M. A., Blader I. J. (2015). Toxoplasma Gondii Infections Alter GABAergic Synapses and Signaling in the Central Nervous System. mBio 6 (6), e1415–e1428. doi:  10.1128/mBio.01428-15 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Burgdorf K. S., Trabjerg B. B., Pedersen M. G., Nissen J., Banasik K., Pedersen O. B., et al.. (2019). Large-Scale Study of Toxoplasma and Cytomegalovirus Shows an Association Between Infection and Serious Psychiatric Disorders. Brain Behav. Immun. 79, 152–158. doi:  10.1016/j.bbi.2019.01.026 [PubMed] [CrossRef] []{Denmark, USA; }
  • Burkinshaw J., Kirman B. H., Sorsby A. (1953). Toxoplasmosis Is in Relation to Mental Deficiency. Br. Med. J. 4812 (1), 702–704. doi:  10.1136/bmj.1.4812.702 [PMC free article] [PubMed] [CrossRef] []{United Kingdom; }
  • Carrillo G. L., Ballard V. A., Glausen T., Boone Z., Teamer J., Hinkson C. L., et al.. (2020). Toxoplasma Infection Induces Microglia-Neuron Contact and the Loss of Perisomatic Inhibitory Synapses. Glia 68 (10), 1968–1986. doi:  10.1002/glia.23816 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Carruthers V. B., Suzuki Y. (2007). Effects of Toxoplasma Gondii Infection on the Brain. Schizophr. Bull. 33 (3), 745–751. doi:  10.1093/schbul/sbm008 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Cheng Y. Z., Xu L. S., Chen B. J., Li L. S., Zhang R. Y., Lin C. X., et al.. (2005). Survey on the Current Status of Important Human Parasitic Infections in Fujian Province. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 23 (5), 283–287. [PubMed] []{China; }
  • Chen Z., Yan S., Dawei C., Peiying H., Huatai C., Jing Y., et al.. (2019). Exploration on the Spatial Spillover Effect of Infrastructure Network on Urbanization: A Case Study in Wuhan Urban Agglomeration. Sustain. Cities Soc. 47, 101476. []{China, USA, Germany; }
  • Cong W., Dong X. Y., Meng Q. F., Zhou N., Wang X. Y., Huang S. Y., et al.. (2015). Toxoplasma Gondii Infection in Pregnant Women: A Seroprevalence and Case-Control Study in Eastern China. BioMed. Res. Int. 2015, 170278. doi:  10.1155/2015/170278 [PMC free article] [PubMed] [CrossRef] []{China; }
  • Courret N., Darche S., Sonigo P., Milon G., Buzoni-Gatel D., Tardieux I. (2006). CD11c- and CD11b-Expressing Mouse Leukocytes Transport Single Toxoplasma Gondii Tachyzoites to the Brain. Blood 107 (1), 309–316. doi:  10.1182/blood-2005-02-0666 [PMC free article] [PubMed] [CrossRef] []{France; }
  • Dard C., Marty P., Brenier-Pinchart M. P., Garnaud C., Fricker-Hidalgo H., Pelloux H., et al.. (2018). Management of Toxoplasmosis in Transplant Recipients: An Update. Expert Rev. Anti Infect. Ther. 16 (6), 447–460. doi:  10.1080/14787210.2018.1483721 [PubMed] [CrossRef] []{France; }
  • David C. N., Frias E. S., Szu J. I., Vieira P. A., Hubbard J. A., Lovelace J., et al.. (2016). GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by The Protozoan Parasite Toxoplasma Gondii. PloS Pathog. 12 (6), e1005643. doi:  10.1371/journal.ppat.1005643 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • de Haan L., Sutterland A. L., Schotborgh J. V., Schirmbeck F., de Haan L. (2021). Association of Toxoplasma Gondii Seropositivity With Cognitive Function in Healthy People: A Systematic Review and Meta-Analysis. JAMA Psychiatry 78 (10), 1103–1112. doi:  10.1001/jamapsychiatry.2021.1590 [PMC free article] [PubMed] [CrossRef] []{Netherlands; }
  • de Moura L., Bahia-Oliveira L. M., Wada M. Y., Jones J. L., Tuboi S. H., Carmo E. H., et al.. (2006). Waterborne Toxoplasmosis, Brazil, From Field to Gene. Emerg. Infect. Dis. 12 (2), 326–329. doi:  10.3201/eid1202.041115 [PMC free article] [PubMed] [CrossRef] []{Brazil; }
  • Desmettre T. (2020). Toxoplasmosis and Behavioural Changes. J. Fr. Ophtalmol. 43 (3), e89–e93. doi:  10.1016/j.jfo.2020.01.001 [PubMed] [CrossRef] []{France, United Kingdom; }
  • Ding H., Gao Y. M., Deng Y., Lamberton P. H., Lu D. B. (2017). A Systematic Review and Meta-Analysis of the Seroprevalence of Toxoplasma Gondii In Cats in Mainland China. Parasit. Vectors 10 (1), 27. doi:  10.1186/s13071-017-1970-6 [PMC free article] [PubMed] [CrossRef] []{China, United Kingdom; }
  • Dong H., Su R., Lu Y., Wang M., Liu J., Jian F., et al.. (2018). Prevalence, Risk Factors, and Genotypes of Toxoplasma Gondii in Food Animals and Humans, (2000-2017) From China. Front. Microbiol. 9, 2108. doi:  10.3389/fmicb.2018.02108 [PMC free article] [PubMed] [CrossRef] []{China; }
  • Dubey J. P. (2008). The History of Toxoplasma Gondii–The First 100 Years. J. Eukaryot. Microbiol. 55 (6), 467–475. doi:  10.1111/j.1550-7408.2008.00345.x [PubMed] [CrossRef] []{USA; }
  • Dubey J. P., Murata F., Cerqueira-Cezar C. K., Kwok O., Yang Y. R. (2020). Public Health Significance of Toxoplasma Gondii Infections in Cattle: 2009-2020. J. Parasitol. 106 (6), 772–788. doi:  10.1645/20-82 [PubMed] [CrossRef] []{USA, China; }
  • Dvorakova-Hortova K., Sidlova A., Ded L., Hladovcova D., Vieweg M., Weidner W., et al.. (2014). Toxoplasma Gondii Decreases the Reproductive Fitness in Mice. PloS One 9 (6), e96770. doi:  10.1371/journal.pone.0096770 [PMC free article] [PubMed] [CrossRef] []{Czech Republic, Germany, Japan; }
  • Evangelista F. F., Costa-Ferreira W., Mantelo F. M., Beletini L. F., de Souza A. H., de Laet S. P., et al.. (2021). Rosuvastatin Revert Memory Impairment and Anxiogenic-Like Effect in Mice Infected With the Chronic ME-49 Strain of Toxoplasma Gondii. PloS One 16 (4), e250079. doi:  10.1371/journal.pone.0250079 [PMC free article] [PubMed] [CrossRef] []{Brazil, Iran; }
  • File S. E., Zangrossi H. J., Andrews N. (1993). Novel Environment and Cat Odor Change GABA and 5-HT Release and Uptake in the Rat. Pharmacol. Biochem. Behav. 45 (4), 931–934. doi:  10.1016/0091-3057(93)90142-g [PubMed] [CrossRef] []{United Kingdom; }
  • Flegr J., Horacek J. (2019). Negative Effects of Latent Toxoplasmosis on Mental Health. Front. Psychiatry 10, 1012. doi:  10.3389/fpsyt.2019.01012 [PMC free article] [PubMed] [CrossRef] []{Czechia, USA, Mexico; }
  • Flegr J., Kodym P., Tolarova V. (2000). Correlation of Duration of Latent Toxoplasma Gondii Infection With Personality Changes in Women. Biol. Psychol. 53 (1), 57–68. doi:  10.1016/s0301-0511(00)00034-x [PubMed] [CrossRef] []{Czech Republic; }
  • Fond G., Macgregor A., Tamouza R., Hamdani N., Meary A., Leboyer M., et al.. (2014). Comparative Analysis of Anti-Toxoplasmic Activity of Antipsychotic Drugs and Valproate. Eur. Arch. Psychiatry Clin. Neurosci. 264 (2), 179–183. doi:  10.1007/s00406-013-0413-4 [PubMed] [CrossRef] []{France; }
  • Fuks J. M., Arrighi R. B., Weidner J. M., Kumar M. S., Jin Z., Wallin R. P., et al.. (2012). GABAergic Signaling Is Linked to a Hypermigratory Phenotype in Dendritic Cells Infected by Toxoplasma Gondii. PloS Pathog. 8 (12), e1003051. doi:  10.1371/journal.ppat.1003051 [PMC free article] [PubMed] [CrossRef] []{Sweden, USA; }
  • Gale S. D., Brown B. L., Erickson L. D., Berrett A., Hedges D. W. (2015). Association Between Latent Toxoplasmosis and Cognition in Adults: A Cross-Sectional Study. Parasitology 142 (4), 557–565. doi:  10.1017/S0031182014001577 [PubMed] [CrossRef] []{USA; }
  • Galvan-Ramirez M. L., Salas-Lais A. G., Duenas-Jimenez S. H., Mendizabal-Ruiz G., Franco T. R., Berumen-Solis S. C., et al.. (2019). Kinematic Locomotion Changes in C57BL/6 Mice Infected With Toxoplasma Strain ME49. Microorganisms 7 (11), 573. doi:  10.3390/microorganisms7110573 [PMC free article] [PubMed] [CrossRef] []{Mexico; }
  • Gaskell E. A., Smith J. E., Pinney J. W., Westhead D. R., McConkey G. A. (2009). A Unique Dual Activity Amino Acid Hydroxylase in Toxoplasma Gondii. PloS One 4 (3), e4801. doi:  10.1371/journal.pone.0004801 [PMC free article] [PubMed] [CrossRef] []{United Kingdom, Brazil; }
  • Gohardehi S., Sharif M., Sarvi S., Moosazadeh M., Alizadeh-Navaei R., Hosseini S. A., et al.. (2018). The Potential Risk of Toxoplasmosis for Traffic Accidents: A Systematic Review and Meta-Analysis. Exp. Parasitol. 191, 19–24. doi:  10.1016/j.exppara.2018.06.003 [PubMed] [CrossRef] []{Iran; }
  • Goodwin D., Hrubec T. C., Klein B. G., Strobl J. S., Werre S. R., Han Q., et al.. (2012). Congenital Infection of Mice With Toxoplasma Gondii Induces Minimal Change in Behavior and No Change in Neurotransmitter Concentrations. J. Parasitol. 98 (4), 706–712. doi:  10.1645/GE-3068.1 [PubMed] [CrossRef] []{USA; }
  • Hakimi M. A., Olias P., Sibley L. D. (2017). Toxoplasma Effectors Targeting Host Signaling and Transcription. Clin. Microbiol. Rev. 30 (3), 615–645. doi:  10.1128/CMR.00005-17 [PMC free article] [PubMed] [CrossRef] []{France, USA, Switzerland; }
  • Hari D. S., Vyas A. (2014). Toxoplasma Gondii Infection Reduces Predator Aversion in Rats Through Epigenetic Modulation in the Host Medial Amygdala. Mol. Ecol. 23 (24), 6114–6122. doi:  10.1111/mec.12888 [PubMed] [CrossRef] []{Singapore; }
  • Hermes G., Ajioka J. W., Kelly K. A., Mui E., Roberts F., Kasza K., et al.. (2008). Neurological and Behavioral Abnormalities, Ventricular Dilatation, Altered Cellular Functions, Inflammation, and Neuronal Injury in Brains of Mice Due to Common, Persistent, Parasitic Infection. J. Neuroinflamm 5, 48. doi:  10.1186/1742-2094-5-48 [PMC free article] [PubMed] [CrossRef] []{United Kingdom, USA; }
  • Hernandez A. V., Thota P., Pellegrino D., Pasupuleti V., Benites-Zapata V. A., Deshpande A., et al.. (2017). A Systematic Review and Meta-Analysis of the Relative Efficacy and Safety of Treatment Regimens for HIV-Associated Cerebral Toxoplasmosis: Is Trimethoprim-Sulfamethoxazole a Real Option? HIV Med. 18 (2), 115–124. doi:  10.1111/hiv.12402 [PubMed] [CrossRef] []{Peru, USA, Brazil; }
  • Howes O. D., Kapur S. (2009). The Dopamine Hypothesis of Schizophrenia: Version III–the Final Common Pathway. Schizophr. Bull. 35 (3), 549–562. doi:  10.1093/schbul/sbp006 [PMC free article] [PubMed] [CrossRef] []{United Kingdom; }
  • Ingram W. M., Goodrich L. M., Robey E. A., Eisen M. B. (2013). Mice Infected With Low-Virulence Strains of Toxoplasma Gondii Lose Their Innate Aversion to Cat Urine, Even After Extensive Parasite Clearance. PloS One 8 (9), e75246. doi:  10.1371/journal.pone.0075246 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Johnson S. K., Fitza M. A., Lerner D. A., Calhoun D. M., Beldon M. A., Chan E. T., et al.. (2018). Risky Business: Linking Toxoplasma Gondii Infection and Entrepreneurship Behaviours Across Individuals and Countries. Proc. Biol. Sci. 285 (1883), 20180822. doi:  10.1098/rspb.2018.0822 [PMC free article] [PubMed] [CrossRef] []{USA, Norway, Spain, Hong Kong; }
  • Johnson H. J., Koshy A. A. (2020). Latent Toxoplasmosis Effects on Rodents and Humans: How Much Is Real and How Much Is Media Hype? mBio 11 (2), e02164–19. doi:  10.1128/mBio.02164-19 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Jones J. L., Kruszon-Moran D., Rivera H. N., Price C., Wilkins P. P. (2014. a). Toxoplasma Gondii Seroprevalence in the United States 2009-2010 and Comparison With the Past Two Decades. Am. J. Trop. Med. Hyg. 90 (6), 1135–1139. doi:  10.4269/ajtmh.14-0013 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Jones J. L., Parise M. E., Fiore A. E. (2014. b). Neglected Parasitic Infections in the United States: Toxoplasmosis. Am. J. Trop. Med. Hyg. 90 (5), 794–799. doi:  10.4269/ajtmh.13-0722 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Kamal A. M., Kamal A. M., Abd E. A., Rizk M. M., Hassan E. E. (2020). Latent Toxoplasmosis Is Associated With Depression and Suicidal Behavior. Arch. Suicide Res. 1–12. doi:  10.1080/13811118.2020.1838368 [PubMed] [CrossRef] []{Egypt; }
  • Kanatani S., Fuks J. M., Olafsson E. B., Westermark L., Chambers B., Varas-Godoy M., et al.. (2017). Voltage-Dependent Calcium Channel Signaling Mediates GABAA Receptor-Induced Migratory Activation of Dendritic Cells Infected by Toxoplasma Gondii. PloS Pathog. 13 (12), e1006739. doi:  10.1371/journal.ppat.1006739 [PMC free article] [PubMed] [CrossRef] []{Sweden, Chile, USA; }
  • Kannan G., Crawford J. A., Yang C., Gressitt K. L., Ihenatu C., Krasnova I. N., et al.. (2016). Anti-NMDA Receptor Autoantibodies and Associated Neurobehavioral Pathology in Mice Are Dependent on Age of First Exposure to Toxoplasma Gondii. Neurobiol. Dis. 91, 307–314. doi:  10.1016/j.nbd.2016.03.005 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Kano S. I., Hodgkinson C. A., Jones-Brando L., Eastwood S., Ishizuka K., Niwa M., et al.. (2020). Host-Parasite Interaction Associated With Major Mental Illness. Mol. Psychiatry 25 (1), 194–205. doi:  10.1038/s41380-018-0217-z [PMC free article] [PubMed] [CrossRef] []{USA, United Kingdom, Denmark; }
  • Kaushik M., Lamberton P. H., Webster J. P. (2012). The Role of Parasites and Pathogens in Influencing Generalised Anxiety and Predation-Related Fear in the Mammalian Central Nervous System. Horm. Behav. 62 (3), 191–201. doi:  10.1016/j.yhbeh.2012.04.002 [PubMed] [CrossRef] []{United Kingdom; }
  • Konradt C., Ueno N., Christian D. A., Delong J. H., Pritchard G. H., Herz J., et al.. (2016). Endothelial Cells Are a Replicative Niche for Entry of Toxoplasma Gondii to the Central Nervous System. Nat. Microbiol. 1, 16001. doi:  10.1038/nmicrobiol.2016.1 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Lafferty K. D. (2006). Can the Common Brain Parasite, Toxoplasma Gondii, Influence Human Culture? Proc. Biol. Sci. 273 (1602), 2749–2755. doi:  10.1098/rspb.2006.3641 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Lambert H., Hitziger N., Dellacasa I., Svensson M., Barragan A. (2006). Induction of Dendritic Cell Migration Upon Toxoplasma Gondii Infection Potentiates Parasite Dissemination. Cell. Microbiol. 8 (10), 1611–1623. doi:  10.1111/j.1462-5822.2006.00735.x [PubMed] [CrossRef] []{Sweden; }
  • Maddison D. C., Giorgini F. (2015). The Kynurenine Pathway and Neurodegenerative Disease. Semin. Cell Dev. Biol. 40, 134–141. doi:  10.1016/j.semcdb.2015.03.002 [PubMed] [CrossRef] []{United Kingdom; }
  • Mahmoud M. E., Ihara F., Fereig R. M., Nishimura M., Nishikawa Y. (2016). Induction of Depression-Related Behaviors by Reactivation of Chronic Toxoplasma Gondii Infection in Mice. Behav. Brain Res. 298 (Pt B), 125–133. doi:  10.1016/j.bbr.2015.11.005 [PubMed] [CrossRef] []{Japan, Egypt; }
  • Martin H. L., Alsaady I., Howell G., Prandovszky E., Peers C., Robinson P., et al.. (2015). Effect of Parasitic Infection on Dopamine Biosynthesis in Dopaminergic Cells. Neuroscience 306, 50–62. doi:  10.1016/j.neuroscience.2015.08.005 [PMC free article] [PubMed] [CrossRef] []{United Kingdom, USA; }
  • Martynowicz J., Augusto L., Wek R. C., Boehm S. N., Sullivan W. J. (2019). Guanabenz Reverses a Key Behavioral Change Caused by Latent Toxoplasmosis in Mice by Reducing Neuroinflammation. mBio 10 (2), e00381–19. doi:  10.1128/mBio.00381-19 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Mccabe R. E. (2001). Toxoplasmosis: A Comprehensive Clinical Guide. Eds. Joynson D. H. M., Wreghitt T. G. (Cambridge, United Kingdom: Cambridge University Press; ). []{United Kingdom; }
  • McConkey G. A., Martin H. L., Bristow G. C., Webster J. P. (2013). Toxoplasma Gondii Infection and Behaviour - Location, Location, Location? J. Exp. Biol. 216 (Pt 1), 113–119. doi:  10.1242/jeb.074153 [PMC free article] [PubMed] [CrossRef] []{United Kingdom; }
  • McFarland R., Wang Z. T., Jouroukhin Y., Li Y., Mychko O., Coppens I., et al.. (2018). AAH2 Gene Is Not Required for Dopamine-Dependent Neurochemical and Behavioral Abnormalities Produced by Toxoplasma Infection in Mouse. Behav. Brain Res. 347, 193–200. doi:  10.1016/j.bbr.2018.03.023 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • McLeod R., V T. C. M. (2014). Toxoplasma Gondii: A Model Apicomplexan—Perspectives and Methods. Hum. Toxoplasma Infect. 99–159. []{USA; }
  • Meurer Y., Brito R., Da S. V., Andade J., Linhares S., Pereira J. A., et al.. (2020). Toxoplasma Gondii Infection Damages the Perineuronal Nets in a Murine Model. Mem. Inst. Oswaldo Cruz 115, e200007. doi:  10.1590/0074-02760200007 [PMC free article] [PubMed] [CrossRef] []{Brazil; }
  • Monroe J. M., Buckley P. F., Miller B. J. (2015). Meta-Analysis of Anti-Toxoplasma Gondii IgM Antibodies in Acute Psychosis. Schizophr. Bull. 41 (4), 989–998. doi:  10.1093/schbul/sbu159 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Nast R., Choepak T., Luder C. (2020). Epigenetic Control of IFN-Gamma Host Responses During Infection With Toxoplasma Gondii. Front. Immunol. 11, 581241. doi:  10.3389/fimmu.2020.581241 [PMC free article] [PubMed] [CrossRef] []{Germany, USA, Japan; }
  • Nayeri T., Sarvi S., Moosazadeh M., Hosseininejad Z., Amouei A., Daryani A. (2021). Association Between Toxoplasma Gondii Infection and Headache: A Systematic Review and Meta-Analysis. Infect. Disord. Drug Targets 21 (4), 643–650. doi:  10.2174/1871526520666200617135851 [PubMed] [CrossRef] []{Iran; }
  • Nayeri T., Sarvi S., Moosazadeh M., Hosseininejad Z., Sharif M., Amouei A., et al.. (2020). Relationship Between Toxoplasmosis and Autism: A Systematic Review and Meta-Analysis. Microb. Pathog. 147, 104434. doi:  10.1016/j.micpath.2020.104434 [PubMed] [CrossRef] []{Iran; }
  • Nelson A. C., Cauceglia J. W., Merkley S. D., Youngson N. A., Oler A. J., Nelson R. J., et al.. (2013). Reintroducing Domesticated Wild Mice to Sociality Induces Adaptive Transgenerational Effects on MUP Expression. Proc. Natl. Acad. Sci. U. S. A. 110 (49), 19848–19853. doi:  10.1073/pnas.1310427110 [PMC free article] [PubMed] [CrossRef] []{USA, Australia; }
  • Ngoungou E. B., Bhalla D., Nzoghe A., Darde M. L., Preux P. M. (2015). Toxoplasmosis and Epilepsy–Systematic Review and Meta Analysis. PloS Negl. Trop. Dis. 9 (2), e3525. doi:  10.1371/journal.pntd.0003525 [PMC free article] [PubMed] [CrossRef] []{France, Gabon, USA; }
  • Bad link
  • Notarangelo F. M., Wilson E. H., Horning K. J., Thomas M. A., Harris T. H., Fang Q., et al.. (2014). Evaluation of Kynurenine Pathway Metabolism in Toxoplasma Gondii-Infected Mice: Implications for Schizophrenia. Schizophr. Res. 152 (1), 261–267. doi:  10.1016/j.schres.2013.11.011 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Ortiz-Guerrero G., Gonzalez-Reyes R. E., De-la-Torre A., Medina-Rincon G., Nava-Mesa M. O. (2020). Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma Gondii Infection. Brain Sci. 10 (6), 369. doi:  10.3390/brainsci10060369 [PMC free article] [PubMed] [CrossRef] []{USA, Colombia; }
  • Pan M., Lyu C., Zhao J., Shen B. (2017). Sixty Years, (1957-2017) of Research on Toxoplasmosis in China-An Overview. Front. Microbiol. 8, 1825. doi:  10.3389/fmicb.2017.01825 [PMC free article] [PubMed] [CrossRef] []{China, USA; }
  • Pappas G., Roussos N., Falagas M. E. (2009). Toxoplasmosis Snapshots: Global Status of Toxoplasma Gondii Seroprevalence and Implications for Pregnancy and Congenital Toxoplasmosis. Int. J. Parasitol. 39 (12), 1385–1394. doi:  10.1016/j.ijpara.2009.04.003 [PubMed] [CrossRef] []{Greece; }
  • Petersen E. (2007). Toxoplasmosis. Semin. Fetal Neonatal Med. 12 (3), 214–223. doi:  10.1016/j.siny.2007.01.011 [PubMed] [CrossRef] []{Denmark; }
  • Postolache T. T., Wadhawan A., Rujescu D., Hoisington A. J., Dagdag A., Baca-Garcia E., et al.. (2021). Toxoplasma Gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front. Psychiatry 12, 665682. doi:  10.3389/fpsyt.2021.665682 [PMC free article] [PubMed] [CrossRef] []{USA, Germany, Spain, Chile, France; "Within the general literature on infections and suicidal behavior, studies on Toxoplasma gondii (T. gondii) occupy a central position. This is related to the parasite's neurotropism, high prevalence of chronic infection, as well as specific and non-specific behavioral alterations in rodents that lead to increased risk taking, which are recapitulated in humans by T. gondii's associations with suicidal behavior, as well as trait impulsivity and aggression, mental illness and traffic accidents."*****}
  • Prandovszky E., Gaskell E., Martin H., Dubey J. P., Webster J. P., McConkey G. A. (2011). The Neurotropic Parasite Toxoplasma Gondii Increases Dopamine Metabolism. PloS One 6 (9), e23866. doi:  10.1371/journal.pone.0023866 [PMC free article] [PubMed] [CrossRef] []{United Kingdom, USA, Brazil; }
  • Rahimi M. T., Daryani A., Sarvi S., Shokri A., Ahmadpour E., Teshnizi S. H., et al.. (2015). Cats and Toxoplasma Gondii: A Systematic Review and Meta-Analysis in Iran. Onderstepoort J. Vet. Res. 82 (1), e1–e10. doi:  10.4102/ojvr.v82i1.823 [PMC free article] [PubMed] [CrossRef] []{Iran; }
  • Remington J., McLeod R., Thulliez P. E. A. (2001). “Toxoplasmosis,” in Infectious Diseases of the Fetus and Newborn Infant. Eds. Remington J. S., Klein J. (Philadelphia: WB Saunders; ), 205–346. []
  • Robert-Gangneux F., Darde M. L. (2012). Epidemiology of and Diagnostic Strategies for Toxoplasmosis. Clin. Microbiol. Rev. 25 (2), 264–296. doi:  10.1128/CMR.05013-11 [PMC free article] [PubMed] [CrossRef] []{France; }
  • Sabou M., Doderer-Lang C., Leyer C., Konjic A., Kubina S., Lennon S., et al.. (2020). Toxoplasma Gondii ROP16 Kinase Silences the Cyclin B1 Gene Promoter by Hijacking Host Cell UHRF1-Dependent Epigenetic Pathways. Cell. Mol. Life Sci. 77 (11), 2141–2156. doi:  10.1007/s00018-019-03267-2 [PMC free article] [PubMed] [CrossRef] []{France; }
  • Sadeghi M., Riahi S. M., Mohammadi M., Saber V., Aghamolaie S., Moghaddam S. A., et al.. (2019). An Updated Meta-Analysis of the Association Between Toxoplasma Gondii Infection and Risk of Epilepsy. Trans. R. Soc. Trop. Med. Hyg. 113 (8), 453–462. doi:  10.1093/trstmh/trz025 [PubMed] [CrossRef] []{Iran, USA; }
  • Schwarcz R., Hunter C. A. (2007). Toxoplasma Gondii and Schizophrenia: Linkage Through Astrocyte-Derived Kynurenic Acid? Schizophr. Bull. 33 (3), 652–653. doi:  10.1093/schbul/sbm030 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Shurson G. C., Urriola P. E., van de Ligt J. (2021). Can We Effectively Manage Parasites, Prions, and Pathogens in the Global Feed Industry to Achieve One Health? Transbound Emerg. Dis. 69 (1), 4–30. doi:  10.1111/tbed.14205 [PubMed] [CrossRef] []{USA; }
  • Singh D. K., Hari D. S., Abdulai-Saiku S., Vyas A. (2020). Testosterone Acts Within the Medial Amygdala of Rats to Reduce Innate Fear to Predator Odor Akin to the Effects of Toxoplasma Gondii Infection. Front. Psychiatry 11, 630. doi:  10.3389/fpsyt.2020.00630 [PMC free article] [PubMed] [CrossRef] []{Singapore, United Kingdom, USA; }
  • Soh L. J., Vasudevan A., Vyas A. (2013). Infection With Toxoplasma Gondii Does Not Elicit Predator Aversion in Male Mice Nor Increase Their Attractiveness in Terms of Mate Choice. Parasitol. Res. 112 (9), 3373–3378. doi:  10.1007/s00436-013-3545-6 [PubMed] [CrossRef] []{Singapore; }
  • Soleymani E., Faizi F., Heidarimoghadam R., Davoodi L., Mohammadi Y. (2020). Association of T. Gondii Infection With Suicide: A Systematic Review and Meta-Analysis. BMC Public Health 20 (1), 766. doi:  10.1186/s12889-020-08898-w [PMC free article] [PubMed] [CrossRef] []{Iran; }
  • Sun X., Wang T., Wang Y., Ai K., Pan G., Li Y., et al.. (2020). Downregulation of lncRNA-11496 in the Brain Contributes to Microglia Apoptosis via Regulation of Mef2c in Chronic T. Gondii Infection Mice. Front. Mol. Neurosci. 13, 77. doi:  10.3389/fnmol.2020.00077 [PMC free article] [PubMed] [CrossRef] []{China; }
  • Sutterland A. L., Fond G., Kuin A., Koeter M. W., Lutter R., van Gool T., et al.. (2015). Beyond the Association. Toxoplasma Gondii in Schizophrenia, Bipolar Disorder, and Addiction: Systematic Review and Meta-Analysis. Acta Psychiatr. Scand. 132 (3), 161–179. doi:  10.1111/acps.12423 [PubMed] [CrossRef] []{Netherlands, France, USA; }
  • Sutterland A. L., Kuin A., Kuiper B., van Gool T., Leboyer M., Fond G., et al.. (2019). Driving Us Mad: The Association of Toxoplasma Gondii With Suicide Attempts and Traffic Accidents - A Systematic Review and Meta-Analysis. Psychol. Med. 49 (10), 1608–1623. doi:  10.1017/S0033291719000813 [PubMed] [CrossRef] []{Netherlands, France; }
  • Syn G., Anderson D., Blackwell J. M., Jamieson S. E. (2018). Epigenetic Dysregulation of Host Gene Expression in Toxoplasma Infection With Specific Reference to Dopamine and Amyloid Pathways. Infect. Genet. Evol. 65, 159–162. doi:  10.1016/j.meegid.2018.07.034 [PubMed] [CrossRef] []{Australia; }
  • Tan D., Vyas A. (2016). Toxoplasma Gondii Infection and Testosterone Congruently Increase Tolerance of Male Rats for Risk of Reward Forfeiture. Horm. Behav. 79, 37–44. doi:  10.1016/j.yhbeh.2016.01.003 [PubMed] [CrossRef] []{Singapore; }
  • Tong W. H., Pavey C., O'Handley R., Vyas A. (2021). Behavioral Biology of Toxoplasma Gondii Infection. Parasit. Vectors 14 (1), 77. doi:  10.1186/s13071-020-04528-x [PMC free article] [PubMed] [CrossRef] []{Singapore, Australia; }
  • Tyebji S., Hannan A. J., Tonkin C. J. (2020). Pathogenic Infection in Male Mice Changes Sperm Small RNA Profiles and Transgenerationally Alters Offspring Behavior. Cell Rep. 31 (4), 107573. doi:  10.1016/j.celrep.2020.107573 [PubMed] [CrossRef] []{Australia; }
  • Tyebji S., Seizova S., Hannan A. J., Tonkin C. J. (2019). Toxoplasmosis: A Pathway to Neuropsychiatric Disorders. Neurosci. Biobehav. Rev. 96, 72–92. doi:  10.1016/j.neubiorev.2018.11.012 [PubMed] [CrossRef] []{Australia; "Toxoplasma gondii is an obligate intracellular parasite that resides, in a latent form, in the human central nervous system. Infection with Toxoplasma drastically alters the behaviour of rodents and is associated with the incidence of specific neuropsychiatric conditions in humans. But the question remains: how does this pervasive human pathogen alter behaviour of the mammalian host? This fundamental question is receiving increasing attention as it has far reaching public health implications for a parasite that is very common in human populations."****}
  • Uzorka J. W., Arend S. M. (2017). A Critical Assessment of the Association Between Postnatal Toxoplasmosis and Epilepsy in Immune-Competent Patients. Eur. J. Clin. Microbiol. Infect. Dis. 36 (7), 1111–1117. doi:  10.1007/s10096-016-2897-0 [PMC free article] [PubMed] [CrossRef] []{Netherlands; }
  • Villares M., Berthelet J., Weitzman J. B. (2020). The Clever Strategies Used by Intracellular Parasites to Hijack Host Gene Expression. Semin. Immunopathol. 42 (2), 215–226. doi:  10.1007/s00281-020-00779-z [PubMed] [CrossRef] []{France; }
  • Vyas A., Kim S. K., Giacomini N., Boothroyd J. C., Sapolsky R. M. (2007). Behavioral Changes Induced by Toxoplasma Infection of Rodents Are Highly Specific to Aversion of Cat Odors. Proc. Natl. Acad. Sci. U. S. A. 104 (15), 6442–6447. doi:  10.1073/pnas.0608310104 [PMC free article] [PubMed] [CrossRef] []{USA; }
  • Webster J. P., Kaushik M., Bristow G. C., McConkey G. A. (2013). Toxoplasma Gondii Infection, From Predation to Schizophrenia: Can Animal Behaviour Help Us Understand Human Behaviour? J. Exp. Biol. 216 (Pt 1), 99–112. doi:  10.1242/jeb.074716 [PMC free article] [PubMed] [CrossRef] []{United Kingdom; }
  • Wong A. H., Josselyn S. A. (2016). Caution When Diagnosing Your Mouse With Schizophrenia: The Use and Misuse of Model Animals for Understanding Psychiatric Disorders. Biol. Psychiatry 79 (1), 32–38. doi:  10.1016/j.biopsych.2015.04.023 [PubMed] [CrossRef] []{Canada; "Animal models are widely used in biomedical research, but their applicability to psychiatric disorders is less clear ...We argue that model animals have great potential to help us understand the core neurobiological dysfunction underlying psychiatric disorders and that marrying genetics and brain circuits with behavior is a good way forward."****}
  • Worth A. R., Andrew T. R., Lymbery A. J. (2014). Reevaluating the Evidence for Toxoplasma Gondii-Induced Behavioural Changes in Rodents. Adv. Parasitol. 85, 109–142. doi:  10.1016/B978-0-12-800182-0.00003-9 [PubMed] [CrossRef] []{Australia; }
  • Xiao J., Li Y., Prandovszky E., Karuppagounder S. S., Talbot C. J., Dawson V. L., et al.. (2014). MicroRNA-132 Dysregulation in Toxoplasma Gondii Infection has Implications for Dopamine Signaling Pathway. Neuroscience 268, 128–138. doi:  10.1016/j.neuroscience.2014.03.015 [PMC free article] [PubMed] [CrossRef] []{USA, China; }
  • Xu M., Gao J., Li S., Zeng M., Wu J., Luo M. (2020). Metagenomic Analysis and Identification of Emerging Pathogens in Blood From Healthy Donors. Sci. Rep. 10 (1), 15809. doi:  10.1038/s41598-020-72808-8 [PMC free article] [PubMed] [CrossRef] []{China; }
  • Yang J., He Z., Chen C., Li S., Qian J., Zhao J., et al.. (2021). Toxoplasma Gondii Infection Inhibits Histone Crotonylation to Regulate Immune Response of Porcine Alveolar Macrophages. Front. Immunol. 12, 696061. doi:  10.3389/fimmu.2021.696061 [PMC free article] [PubMed] [CrossRef] []{China; "[Toxo in blood donations] ... The most frequent bacterium was Escherichia coli ... and the most prevalent parasite was Toxoplasma gondii"}