This is an appendix to: On The Origin Of The Home Of COVID-19 - 34
- Abdulai-Saiku S., Tong W. H., Vyas A. (2021). Behavioral Manipulation by Toxoplasma gondii: Does Brain Residence Matter? Trends Parasitol. 37 (5), 381–390. doi: 10.1016/j.pt.2020.12.006 [PubMed] [CrossRef] [Google Scholar]{China; brain cysts are "merely incidental to the behavioral change, without a necessary or sufficient role"}
- Acquarone M., Poleto A., Perozzo A. F., Goncalves P., Panizzutti R., Menezes J., et al.. (2021). Social Preference Is Maintained in Mice With Impaired Startle Reflex and Glutamate/D-Serine Imbalance Induced by Chronic Cerebral Toxoplasmosis. Sci. Rep. 11 (1), 14029. doi: 10.1038/s41598-021-93504-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Brazil; "Besides schizophrenia, other neuropsychiatric disorders and neurological diseases have been correlated to toxoplasmosis, such as bipolar disorder, obsessive–compulsive disorder, aggressive and suicidal behavior, but also Parkinson’s and Alzheimer’s disease."}
- Afonso C., Paixao V. B., Costa R. M. (2012). Chronic Toxoplasma Infection Modifies the Structure and the Risk of Host Behavior. PloS One 7 (3), e32489. doi: 10.1371/journal.pone.0032489 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Portugal,France; }
-
Afonso C., Paixao V. B., Klaus A., Lunghi M., Piro F., Emiliani C., et al.. (2017). Toxoplasma-Induced Changes in Host Risk Behaviour Are Independent of Parasite-Derived AaaH2 Tyrosine Hydroxylase. Sci. Rep.
7 (1), 13822. doi: 10.1038/s41598-017-13229-y
[PMC free article] [PubMed] [CrossRef] [Google Scholar] {France;}
- Akgul O., Demirel O. F., Aksoy P. C., Tanriover A. E., Uysal N., Bulu E., et al.. (2021). Toxoplasma Gondii Infection by Serological and Molecular Methods in Schizophrenia Patients With and Without Suicide Attempts: An Age-Sex-Matched Case-Control Study. Int. J. Clin. Pract. 75 (8), e14449. doi: 10.1111/ijcp.14449 [PubMed] [CrossRef] [Google Scholar]{Turkey;}
- Al M. J., Hussien N. A., Al M. F. (2021). Maternal Toxoplasmosis and the Risk of Childhood Autism: Serological and Molecular Small-Scale Studies. BMC Pediatr. 21 (1), 133. doi: 10.1186/s12887-021-02604-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Saudi Arabia;}
- Alsaady I., Tedford E., Alsaad M., Bristow G., Kohli S., Murray M., et al.. (2019). Downregulation of the Central Noradrenergic System by Toxoplasma Gondii Infection. Infect. Immun. 87 (2), e00789–18. doi: 10.1128/IAI.00789-18 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{United Kingdom, Saudi Arabia;}
-
Barbosa J. L., Bela S. R., Ricci M. F., Noviello M., Cartelle C. T., Pinheiro B. V., et al. (2020). Spontaneous
T. Gondii Neuronal Encystment Induces Structural Neuritic Network
Impairment Associated With Changes of Tyrosine Hydroxilase Expression. Neurosci. Lett.
718, 134721. doi: 10.1016/j.neulet.2019.134721
[PubMed] [CrossRef] [Google Scholar] {Brazil;}
- Bayani M., Riahi S. M., Bazrafshan N., Ray G. H., Rostami A. (2019). Toxoplasma Gondii Infection and Risk of Parkinson and Alzheimer Diseases: A Systematic Review and Meta-Analysis on Observational Studies. Acta Trop. 196, 165–171. doi: 10.1016/j.actatropica.2019.05.015 [PubMed] [CrossRef] [Google Scholar]{USA, Iran;}
- Berdoy M., Webster J. P., Macdonald D. W. (2000). Fatal Attraction in Rats Infected With Toxoplasma Gondii. Proc. Biol. Sci. 267 (1452), 1591–1594. doi: 10.1098/rspb.2000.1182 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{United Kingdom;}
- Bhandage A. K., Kanatani S., Barragan A. (2019). Toxoplasma-Induced Hypermigration of Primary Cortical Microglia Implicates GABAergic Signaling. Front. Cell. Infect. Microbiol. 9, 73. doi: 10.3389/fcimb.2019.00073 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Sweden, France, USA; }
- Berenreiterova M., Flegr J., Kubena A. A., Nemec P. (2011). The Distribution of Toxoplasma gondii Cysts in the Brain of a Mouse With LatentTtoxoplasmosis: Implications for the Behavioral Manipulation Hypothesis. PLoS One 6 (12), e28925. doi: 10.1371/journal.pone.0028925 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Czech Republic, Israel; }
- Blanchard N., Dunay I. R., Schluter D. (2015). Persistence of Toxoplasma Gondii in the Central Nervous System: A Fine-Tuned Balance Between the Parasite, the Brain and the Immune System. Parasite Immunol. 37 (3), 150–158. doi: 10.1111/pim.12173 [PubMed] [CrossRef] [Google Scholar]{Swizerland, Canada; }
- Boillat M., Hammoudi P. M., Dogga S. K., Pages S., Goubran M., Rodriguez I., et al.. (2020). Neuroinflammation-Associated Aspecific Manipulation of Mouse Predator Fear by Toxoplasma Gondii. Cell Rep. 30 (2), 320–334. doi: 10.1016/j.celrep.2019.12.019 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Swizerland, Canada;}
- Braun L., Brenier-Pinchart M. P., Hammoudi P. M., Cannella D., Kieffer-Jaquinod S., Vollaire J., et al.. (2019). The Toxoplasma Effector TEEGR Promotes Parasite Persistence by Modulating NF-kappaB Signalling via EZH2. Nat. Microbiol. 4 (7), 1208–1220. doi: 10.1038/s41564-019-0431-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{France; }
- Brooks J. M., Carrillo G. L., Su J., Lindsay D. S., Fox M. A., Blader I. J. (2015). Toxoplasma Gondii Infections Alter GABAergic Synapses and Signaling in the Central Nervous System. mBio 6 (6), e1415–e1428. doi: 10.1128/mBio.01428-15 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Burgdorf K. S., Trabjerg B. B., Pedersen M. G., Nissen J., Banasik K., Pedersen O. B., et al.. (2019). Large-Scale Study of Toxoplasma and Cytomegalovirus Shows an Association Between Infection and Serious Psychiatric Disorders. Brain Behav. Immun. 79, 152–158. doi: 10.1016/j.bbi.2019.01.026 [PubMed] [CrossRef] [Google Scholar]{Denmark, USA; }
- Burkinshaw J., Kirman B. H., Sorsby A. (1953). Toxoplasmosis Is in Relation to Mental Deficiency. Br. Med. J. 4812 (1), 702–704. doi: 10.1136/bmj.1.4812.702 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{United Kingdom; }
- Carrillo G. L., Ballard V. A., Glausen T., Boone Z., Teamer J., Hinkson C. L., et al.. (2020). Toxoplasma Infection Induces Microglia-Neuron Contact and the Loss of Perisomatic Inhibitory Synapses. Glia 68 (10), 1968–1986. doi: 10.1002/glia.23816 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Carruthers V. B., Suzuki Y. (2007). Effects of Toxoplasma Gondii Infection on the Brain. Schizophr. Bull. 33 (3), 745–751. doi: 10.1093/schbul/sbm008 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Cheng Y. Z., Xu L. S., Chen B. J., Li L. S., Zhang R. Y., Lin C. X., et al.. (2005). Survey on the Current Status of Important Human Parasitic Infections in Fujian Province. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 23 (5), 283–287. [PubMed] [Google Scholar]{China; }
- Chen Z., Yan S., Dawei C., Peiying H., Huatai C., Jing Y., et al.. (2019). Exploration on the Spatial Spillover Effect of Infrastructure Network on Urbanization: A Case Study in Wuhan Urban Agglomeration. Sustain. Cities Soc. 47, 101476. [Google Scholar]{China, USA, Germany; }
- Cong W., Dong X. Y., Meng Q. F., Zhou N., Wang X. Y., Huang S. Y., et al.. (2015). Toxoplasma Gondii Infection in Pregnant Women: A Seroprevalence and Case-Control Study in Eastern China. BioMed. Res. Int. 2015, 170278. doi: 10.1155/2015/170278 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{China; }
- Courret N., Darche S., Sonigo P., Milon G., Buzoni-Gatel D., Tardieux I. (2006). CD11c- and CD11b-Expressing Mouse Leukocytes Transport Single Toxoplasma Gondii Tachyzoites to the Brain. Blood 107 (1), 309–316. doi: 10.1182/blood-2005-02-0666 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{France; }
- Dard C., Marty P., Brenier-Pinchart M. P., Garnaud C., Fricker-Hidalgo H., Pelloux H., et al.. (2018). Management of Toxoplasmosis in Transplant Recipients: An Update. Expert Rev. Anti Infect. Ther. 16 (6), 447–460. doi: 10.1080/14787210.2018.1483721 [PubMed] [CrossRef] [Google Scholar]{France; }
- David C. N., Frias E. S., Szu J. I., Vieira P. A., Hubbard J. A., Lovelace J., et al.. (2016). GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by The Protozoan Parasite Toxoplasma Gondii. PloS Pathog. 12 (6), e1005643. doi: 10.1371/journal.ppat.1005643 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- de Haan L., Sutterland A. L., Schotborgh J. V., Schirmbeck F., de Haan L. (2021). Association of Toxoplasma Gondii Seropositivity With Cognitive Function in Healthy People: A Systematic Review and Meta-Analysis. JAMA Psychiatry 78 (10), 1103–1112. doi: 10.1001/jamapsychiatry.2021.1590 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Netherlands; }
- de Moura L., Bahia-Oliveira L. M., Wada M. Y., Jones J. L., Tuboi S. H., Carmo E. H., et al.. (2006). Waterborne Toxoplasmosis, Brazil, From Field to Gene. Emerg. Infect. Dis. 12 (2), 326–329. doi: 10.3201/eid1202.041115 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Brazil; }
- Desmettre T. (2020). Toxoplasmosis and Behavioural Changes. J. Fr. Ophtalmol. 43 (3), e89–e93. doi: 10.1016/j.jfo.2020.01.001 [PubMed] [CrossRef] [Google Scholar]{France, United Kingdom; }
- Ding H., Gao Y. M., Deng Y., Lamberton P. H., Lu D. B. (2017). A Systematic Review and Meta-Analysis of the Seroprevalence of Toxoplasma Gondii In Cats in Mainland China. Parasit. Vectors 10 (1), 27. doi: 10.1186/s13071-017-1970-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{China, United Kingdom; }
- Dong H., Su R., Lu Y., Wang M., Liu J., Jian F., et al.. (2018). Prevalence, Risk Factors, and Genotypes of Toxoplasma Gondii in Food Animals and Humans, (2000-2017) From China. Front. Microbiol. 9, 2108. doi: 10.3389/fmicb.2018.02108 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{China; }
- Dubey J. P. (2008). The History of Toxoplasma Gondii–The First 100 Years. J. Eukaryot. Microbiol. 55 (6), 467–475. doi: 10.1111/j.1550-7408.2008.00345.x [PubMed] [CrossRef] [Google Scholar]{USA; }
- Dubey J. P., Murata F., Cerqueira-Cezar C. K., Kwok O., Yang Y. R. (2020). Public Health Significance of Toxoplasma Gondii Infections in Cattle: 2009-2020. J. Parasitol. 106 (6), 772–788. doi: 10.1645/20-82 [PubMed] [CrossRef] [Google Scholar]{USA, China; }
- Dvorakova-Hortova K., Sidlova A., Ded L., Hladovcova D., Vieweg M., Weidner W., et al.. (2014). Toxoplasma Gondii Decreases the Reproductive Fitness in Mice. PloS One 9 (6), e96770. doi: 10.1371/journal.pone.0096770 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Czech Republic, Germany, Japan; }
- Evangelista F. F., Costa-Ferreira W., Mantelo F. M., Beletini L. F., de Souza A. H., de Laet S. P., et al.. (2021). Rosuvastatin Revert Memory Impairment and Anxiogenic-Like Effect in Mice Infected With the Chronic ME-49 Strain of Toxoplasma Gondii. PloS One 16 (4), e250079. doi: 10.1371/journal.pone.0250079 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Brazil, Iran; }
- File S. E., Zangrossi H. J., Andrews N. (1993). Novel Environment and Cat Odor Change GABA and 5-HT Release and Uptake in the Rat. Pharmacol. Biochem. Behav. 45 (4), 931–934. doi: 10.1016/0091-3057(93)90142-g [PubMed] [CrossRef] [Google Scholar]{United Kingdom; }
- Flegr J., Horacek J. (2019). Negative Effects of Latent Toxoplasmosis on Mental Health. Front. Psychiatry 10, 1012. doi: 10.3389/fpsyt.2019.01012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Czechia, USA, Mexico; }
- Flegr J., Kodym P., Tolarova V. (2000). Correlation of Duration of Latent Toxoplasma Gondii Infection With Personality Changes in Women. Biol. Psychol. 53 (1), 57–68. doi: 10.1016/s0301-0511(00)00034-x [PubMed] [CrossRef] [Google Scholar]{Czech Republic; }
- Fond G., Macgregor A., Tamouza R., Hamdani N., Meary A., Leboyer M., et al.. (2014). Comparative Analysis of Anti-Toxoplasmic Activity of Antipsychotic Drugs and Valproate. Eur. Arch. Psychiatry Clin. Neurosci. 264 (2), 179–183. doi: 10.1007/s00406-013-0413-4 [PubMed] [CrossRef] [Google Scholar]{France; }
- Fuks J. M., Arrighi R. B., Weidner J. M., Kumar M. S., Jin Z., Wallin R. P., et al.. (2012). GABAergic Signaling Is Linked to a Hypermigratory Phenotype in Dendritic Cells Infected by Toxoplasma Gondii. PloS Pathog. 8 (12), e1003051. doi: 10.1371/journal.ppat.1003051 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Sweden, USA; }
- Gale S. D., Brown B. L., Erickson L. D., Berrett A., Hedges D. W. (2015). Association Between Latent Toxoplasmosis and Cognition in Adults: A Cross-Sectional Study. Parasitology 142 (4), 557–565. doi: 10.1017/S0031182014001577 [PubMed] [CrossRef] [Google Scholar]{USA; }
- Galvan-Ramirez M. L., Salas-Lais A. G., Duenas-Jimenez S. H., Mendizabal-Ruiz G., Franco T. R., Berumen-Solis S. C., et al.. (2019). Kinematic Locomotion Changes in C57BL/6 Mice Infected With Toxoplasma Strain ME49. Microorganisms 7 (11), 573. doi: 10.3390/microorganisms7110573 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Mexico; }
- Gaskell E. A., Smith J. E., Pinney J. W., Westhead D. R., McConkey G. A. (2009). A Unique Dual Activity Amino Acid Hydroxylase in Toxoplasma Gondii. PloS One 4 (3), e4801. doi: 10.1371/journal.pone.0004801 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{United Kingdom, Brazil; }
- Gohardehi S., Sharif M., Sarvi S., Moosazadeh M., Alizadeh-Navaei R., Hosseini S. A., et al.. (2018). The Potential Risk of Toxoplasmosis for Traffic Accidents: A Systematic Review and Meta-Analysis. Exp. Parasitol. 191, 19–24. doi: 10.1016/j.exppara.2018.06.003 [PubMed] [CrossRef] [Google Scholar]{Iran; }
- Goodwin D., Hrubec T. C., Klein B. G., Strobl J. S., Werre S. R., Han Q., et al.. (2012). Congenital Infection of Mice With Toxoplasma Gondii Induces Minimal Change in Behavior and No Change in Neurotransmitter Concentrations. J. Parasitol. 98 (4), 706–712. doi: 10.1645/GE-3068.1 [PubMed] [CrossRef] [Google Scholar]{USA; }
- Hakimi M. A., Olias P., Sibley L. D. (2017). Toxoplasma Effectors Targeting Host Signaling and Transcription. Clin. Microbiol. Rev. 30 (3), 615–645. doi: 10.1128/CMR.00005-17 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{France, USA, Switzerland; }
- Hari D. S., Vyas A. (2014). Toxoplasma Gondii Infection Reduces Predator Aversion in Rats Through Epigenetic Modulation in the Host Medial Amygdala. Mol. Ecol. 23 (24), 6114–6122. doi: 10.1111/mec.12888 [PubMed] [CrossRef] [Google Scholar]{Singapore; }
- Hermes G., Ajioka J. W., Kelly K. A., Mui E., Roberts F., Kasza K., et al.. (2008). Neurological and Behavioral Abnormalities, Ventricular Dilatation, Altered Cellular Functions, Inflammation, and Neuronal Injury in Brains of Mice Due to Common, Persistent, Parasitic Infection. J. Neuroinflamm 5, 48. doi: 10.1186/1742-2094-5-48 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{United Kingdom, USA; }
- Hernandez A. V., Thota P., Pellegrino D., Pasupuleti V., Benites-Zapata V. A., Deshpande A., et al.. (2017). A Systematic Review and Meta-Analysis of the Relative Efficacy and Safety of Treatment Regimens for HIV-Associated Cerebral Toxoplasmosis: Is Trimethoprim-Sulfamethoxazole a Real Option? HIV Med. 18 (2), 115–124. doi: 10.1111/hiv.12402 [PubMed] [CrossRef] [Google Scholar]{Peru, USA, Brazil; }
- Howes O. D., Kapur S. (2009). The Dopamine Hypothesis of Schizophrenia: Version III–the Final Common Pathway. Schizophr. Bull. 35 (3), 549–562. doi: 10.1093/schbul/sbp006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{United Kingdom; }
- Ingram W. M., Goodrich L. M., Robey E. A., Eisen M. B. (2013). Mice Infected With Low-Virulence Strains of Toxoplasma Gondii Lose Their Innate Aversion to Cat Urine, Even After Extensive Parasite Clearance. PloS One 8 (9), e75246. doi: 10.1371/journal.pone.0075246 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Johnson S. K., Fitza M. A., Lerner D. A., Calhoun D. M., Beldon M. A., Chan E. T., et al.. (2018). Risky Business: Linking Toxoplasma Gondii Infection and Entrepreneurship Behaviours Across Individuals and Countries. Proc. Biol. Sci. 285 (1883), 20180822. doi: 10.1098/rspb.2018.0822 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA, Norway, Spain, Hong Kong; }
- Johnson H. J., Koshy A. A. (2020). Latent Toxoplasmosis Effects on Rodents and Humans: How Much Is Real and How Much Is Media Hype? mBio 11 (2), e02164–19. doi: 10.1128/mBio.02164-19 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Jones J. L., Kruszon-Moran D., Rivera H. N., Price C., Wilkins P. P. (2014. a). Toxoplasma Gondii Seroprevalence in the United States 2009-2010 and Comparison With the Past Two Decades. Am. J. Trop. Med. Hyg. 90 (6), 1135–1139. doi: 10.4269/ajtmh.14-0013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Jones J. L., Parise M. E., Fiore A. E. (2014. b). Neglected Parasitic Infections in the United States: Toxoplasmosis. Am. J. Trop. Med. Hyg. 90 (5), 794–799. doi: 10.4269/ajtmh.13-0722 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Kamal A. M., Kamal A. M., Abd E. A., Rizk M. M., Hassan E. E. (2020). Latent Toxoplasmosis Is Associated With Depression and Suicidal Behavior. Arch. Suicide Res. 1–12. doi: 10.1080/13811118.2020.1838368 [PubMed] [CrossRef] [Google Scholar]{Egypt; }
- Kanatani S., Fuks J. M., Olafsson E. B., Westermark L., Chambers B., Varas-Godoy M., et al.. (2017). Voltage-Dependent Calcium Channel Signaling Mediates GABAA Receptor-Induced Migratory Activation of Dendritic Cells Infected by Toxoplasma Gondii. PloS Pathog. 13 (12), e1006739. doi: 10.1371/journal.ppat.1006739 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Sweden, Chile, USA; }
- Kannan G., Crawford J. A., Yang C., Gressitt K. L., Ihenatu C., Krasnova I. N., et al.. (2016). Anti-NMDA Receptor Autoantibodies and Associated Neurobehavioral Pathology in Mice Are Dependent on Age of First Exposure to Toxoplasma Gondii. Neurobiol. Dis. 91, 307–314. doi: 10.1016/j.nbd.2016.03.005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Kano S. I., Hodgkinson C. A., Jones-Brando L., Eastwood S., Ishizuka K., Niwa M., et al.. (2020). Host-Parasite Interaction Associated With Major Mental Illness. Mol. Psychiatry 25 (1), 194–205. doi: 10.1038/s41380-018-0217-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA, United Kingdom, Denmark; }
- Kaushik M., Lamberton P. H., Webster J. P. (2012). The Role of Parasites and Pathogens in Influencing Generalised Anxiety and Predation-Related Fear in the Mammalian Central Nervous System. Horm. Behav. 62 (3), 191–201. doi: 10.1016/j.yhbeh.2012.04.002 [PubMed] [CrossRef] [Google Scholar]{United Kingdom; }
- Konradt C., Ueno N., Christian D. A., Delong J. H., Pritchard G. H., Herz J., et al.. (2016). Endothelial Cells Are a Replicative Niche for Entry of Toxoplasma Gondii to the Central Nervous System. Nat. Microbiol. 1, 16001. doi: 10.1038/nmicrobiol.2016.1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Lafferty K. D. (2006). Can the Common Brain Parasite, Toxoplasma Gondii, Influence Human Culture? Proc. Biol. Sci. 273 (1602), 2749–2755. doi: 10.1098/rspb.2006.3641 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Lambert H., Hitziger N., Dellacasa I., Svensson M., Barragan A. (2006). Induction of Dendritic Cell Migration Upon Toxoplasma Gondii Infection Potentiates Parasite Dissemination. Cell. Microbiol. 8 (10), 1611–1623. doi: 10.1111/j.1462-5822.2006.00735.x [PubMed] [CrossRef] [Google Scholar]{Sweden; }
- Maddison D. C., Giorgini F. (2015). The Kynurenine Pathway and Neurodegenerative Disease. Semin. Cell Dev. Biol. 40, 134–141. doi: 10.1016/j.semcdb.2015.03.002 [PubMed] [CrossRef] [Google Scholar]{United Kingdom; }
- Mahmoud M. E., Ihara F., Fereig R. M., Nishimura M., Nishikawa Y. (2016). Induction of Depression-Related Behaviors by Reactivation of Chronic Toxoplasma Gondii Infection in Mice. Behav. Brain Res. 298 (Pt B), 125–133. doi: 10.1016/j.bbr.2015.11.005 [PubMed] [CrossRef] [Google Scholar]{Japan, Egypt; }
- Martin H. L., Alsaady I., Howell G., Prandovszky E., Peers C., Robinson P., et al.. (2015). Effect of Parasitic Infection on Dopamine Biosynthesis in Dopaminergic Cells. Neuroscience 306, 50–62. doi: 10.1016/j.neuroscience.2015.08.005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{United Kingdom, USA; }
- Martynowicz J., Augusto L., Wek R. C., Boehm S. N., Sullivan W. J. (2019). Guanabenz Reverses a Key Behavioral Change Caused by Latent Toxoplasmosis in Mice by Reducing Neuroinflammation. mBio 10 (2), e00381–19. doi: 10.1128/mBio.00381-19 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Mccabe R. E. (2001). Toxoplasmosis: A Comprehensive Clinical Guide. Eds. Joynson D. H. M., Wreghitt T. G. (Cambridge, United Kingdom: Cambridge University Press; ). [Google Scholar]{United Kingdom; }
- McConkey G. A., Martin H. L., Bristow G. C., Webster J. P. (2013). Toxoplasma Gondii Infection and Behaviour - Location, Location, Location? J. Exp. Biol. 216 (Pt 1), 113–119. doi: 10.1242/jeb.074153 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{United Kingdom; }
- McFarland R., Wang Z. T., Jouroukhin Y., Li Y., Mychko O., Coppens I., et al.. (2018). AAH2 Gene Is Not Required for Dopamine-Dependent Neurochemical and Behavioral Abnormalities Produced by Toxoplasma Infection in Mouse. Behav. Brain Res. 347, 193–200. doi: 10.1016/j.bbr.2018.03.023 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- McLeod R., V T. C. M. (2014). Toxoplasma Gondii: A Model Apicomplexan—Perspectives and Methods. Hum. Toxoplasma Infect. 99–159. [Google Scholar]{USA; }
- Meurer Y., Brito R., Da S. V., Andade J., Linhares S., Pereira J. A., et al.. (2020). Toxoplasma Gondii Infection Damages the Perineuronal Nets in a Murine Model. Mem. Inst. Oswaldo Cruz 115, e200007. doi: 10.1590/0074-02760200007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Brazil; }
- Monroe J. M., Buckley P. F., Miller B. J. (2015). Meta-Analysis of Anti-Toxoplasma Gondii IgM Antibodies in Acute Psychosis. Schizophr. Bull. 41 (4), 989–998. doi: 10.1093/schbul/sbu159 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Nast R., Choepak T., Luder C. (2020). Epigenetic Control of IFN-Gamma Host Responses During Infection With Toxoplasma Gondii. Front. Immunol. 11, 581241. doi: 10.3389/fimmu.2020.581241 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Germany, USA, Japan; }
- Nayeri T., Sarvi S., Moosazadeh M., Hosseininejad Z., Amouei A., Daryani A. (2021). Association Between Toxoplasma Gondii Infection and Headache: A Systematic Review and Meta-Analysis. Infect. Disord. Drug Targets 21 (4), 643–650. doi: 10.2174/1871526520666200617135851 [PubMed] [CrossRef] [Google Scholar]{Iran; }
- Nayeri T., Sarvi S., Moosazadeh M., Hosseininejad Z., Sharif M., Amouei A., et al.. (2020). Relationship Between Toxoplasmosis and Autism: A Systematic Review and Meta-Analysis. Microb. Pathog. 147, 104434. doi: 10.1016/j.micpath.2020.104434 [PubMed] [CrossRef] [Google Scholar]{Iran; }
- Nelson A. C., Cauceglia J. W., Merkley S. D., Youngson N. A., Oler A. J., Nelson R. J., et al.. (2013). Reintroducing Domesticated Wild Mice to Sociality Induces Adaptive Transgenerational Effects on MUP Expression. Proc. Natl. Acad. Sci. U. S. A. 110 (49), 19848–19853. doi: 10.1073/pnas.1310427110 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA, Australia; }
- Ngoungou E. B., Bhalla D., Nzoghe A., Darde M. L., Preux P. M. (2015). Toxoplasmosis and Epilepsy–Systematic Review and Meta Analysis. PloS Negl. Trop. Dis. 9 (2), e3525. doi: 10.1371/journal.pntd.0003525 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{France, Gabon, USA; }
- Bad link
- Notarangelo F. M., Wilson E. H., Horning K. J., Thomas M. A., Harris T. H., Fang Q., et al.. (2014). Evaluation of Kynurenine Pathway Metabolism in Toxoplasma Gondii-Infected Mice: Implications for Schizophrenia. Schizophr. Res. 152 (1), 261–267. doi: 10.1016/j.schres.2013.11.011 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Ortiz-Guerrero G., Gonzalez-Reyes R. E., De-la-Torre A., Medina-Rincon G., Nava-Mesa M. O. (2020). Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma Gondii Infection. Brain Sci. 10 (6), 369. doi: 10.3390/brainsci10060369 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA, Colombia; }
- Pan M., Lyu C., Zhao J., Shen B. (2017). Sixty Years, (1957-2017) of Research on Toxoplasmosis in China-An Overview. Front. Microbiol. 8, 1825. doi: 10.3389/fmicb.2017.01825 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{China, USA; }
- Pappas G., Roussos N., Falagas M. E. (2009). Toxoplasmosis Snapshots: Global Status of Toxoplasma Gondii Seroprevalence and Implications for Pregnancy and Congenital Toxoplasmosis. Int. J. Parasitol. 39 (12), 1385–1394. doi: 10.1016/j.ijpara.2009.04.003 [PubMed] [CrossRef] [Google Scholar]{Greece; }
- Petersen E. (2007). Toxoplasmosis. Semin. Fetal Neonatal Med. 12 (3), 214–223. doi: 10.1016/j.siny.2007.01.011 [PubMed] [CrossRef] [Google Scholar]{Denmark; }
- Postolache T. T., Wadhawan A., Rujescu D., Hoisington A. J., Dagdag A., Baca-Garcia E., et al.. (2021). Toxoplasma Gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front. Psychiatry 12, 665682. doi: 10.3389/fpsyt.2021.665682 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA, Germany, Spain, Chile, France; "Within the general literature on infections and suicidal behavior, studies on Toxoplasma gondii (T. gondii) occupy a central position. This is related to the parasite's neurotropism, high prevalence of chronic infection, as well as specific and non-specific behavioral alterations in rodents that lead to increased risk taking, which are recapitulated in humans by T. gondii's associations with suicidal behavior, as well as trait impulsivity and aggression, mental illness and traffic accidents."*****}
- Prandovszky E., Gaskell E., Martin H., Dubey J. P., Webster J. P., McConkey G. A. (2011). The Neurotropic Parasite Toxoplasma Gondii Increases Dopamine Metabolism. PloS One 6 (9), e23866. doi: 10.1371/journal.pone.0023866 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{United Kingdom, USA, Brazil; }
- Rahimi M. T., Daryani A., Sarvi S., Shokri A., Ahmadpour E., Teshnizi S. H., et al.. (2015). Cats and Toxoplasma Gondii: A Systematic Review and Meta-Analysis in Iran. Onderstepoort J. Vet. Res. 82 (1), e1–e10. doi: 10.4102/ojvr.v82i1.823 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Iran; }
- Remington J., McLeod R., Thulliez P. E. A. (2001). “Toxoplasmosis,” in Infectious Diseases of the Fetus and Newborn Infant. Eds. Remington J. S., Klein J. (Philadelphia: WB Saunders; ), 205–346. [Google Scholar]
- Robert-Gangneux F., Darde M. L. (2012). Epidemiology of and Diagnostic Strategies for Toxoplasmosis. Clin. Microbiol. Rev. 25 (2), 264–296. doi: 10.1128/CMR.05013-11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{France; }
- Sabou M., Doderer-Lang C., Leyer C., Konjic A., Kubina S., Lennon S., et al.. (2020). Toxoplasma Gondii ROP16 Kinase Silences the Cyclin B1 Gene Promoter by Hijacking Host Cell UHRF1-Dependent Epigenetic Pathways. Cell. Mol. Life Sci. 77 (11), 2141–2156. doi: 10.1007/s00018-019-03267-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{France; }
- Sadeghi M., Riahi S. M., Mohammadi M., Saber V., Aghamolaie S., Moghaddam S. A., et al.. (2019). An Updated Meta-Analysis of the Association Between Toxoplasma Gondii Infection and Risk of Epilepsy. Trans. R. Soc. Trop. Med. Hyg. 113 (8), 453–462. doi: 10.1093/trstmh/trz025 [PubMed] [CrossRef] [Google Scholar]{Iran, USA; }
- Schwarcz R., Hunter C. A. (2007). Toxoplasma Gondii and Schizophrenia: Linkage Through Astrocyte-Derived Kynurenic Acid? Schizophr. Bull. 33 (3), 652–653. doi: 10.1093/schbul/sbm030 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Shurson G. C., Urriola P. E., van de Ligt J. (2021). Can We Effectively Manage Parasites, Prions, and Pathogens in the Global Feed Industry to Achieve One Health? Transbound Emerg. Dis. 69 (1), 4–30. doi: 10.1111/tbed.14205 [PubMed] [CrossRef] [Google Scholar]{USA; }
- Singh D. K., Hari D. S., Abdulai-Saiku S., Vyas A. (2020). Testosterone Acts Within the Medial Amygdala of Rats to Reduce Innate Fear to Predator Odor Akin to the Effects of Toxoplasma Gondii Infection. Front. Psychiatry 11, 630. doi: 10.3389/fpsyt.2020.00630 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Singapore, United Kingdom, USA; }
- Soh L. J., Vasudevan A., Vyas A. (2013). Infection With Toxoplasma Gondii Does Not Elicit Predator Aversion in Male Mice Nor Increase Their Attractiveness in Terms of Mate Choice. Parasitol. Res. 112 (9), 3373–3378. doi: 10.1007/s00436-013-3545-6 [PubMed] [CrossRef] [Google Scholar]{Singapore; }
- Soleymani E., Faizi F., Heidarimoghadam R., Davoodi L., Mohammadi Y. (2020). Association of T. Gondii Infection With Suicide: A Systematic Review and Meta-Analysis. BMC Public Health 20 (1), 766. doi: 10.1186/s12889-020-08898-w [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Iran; }
- Sun X., Wang T., Wang Y., Ai K., Pan G., Li Y., et al.. (2020). Downregulation of lncRNA-11496 in the Brain Contributes to Microglia Apoptosis via Regulation of Mef2c in Chronic T. Gondii Infection Mice. Front. Mol. Neurosci. 13, 77. doi: 10.3389/fnmol.2020.00077 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{China; }
- Sutterland A. L., Fond G., Kuin A., Koeter M. W., Lutter R., van Gool T., et al.. (2015). Beyond the Association. Toxoplasma Gondii in Schizophrenia, Bipolar Disorder, and Addiction: Systematic Review and Meta-Analysis. Acta Psychiatr. Scand. 132 (3), 161–179. doi: 10.1111/acps.12423 [PubMed] [CrossRef] [Google Scholar]{Netherlands, France, USA; }
- Sutterland A. L., Kuin A., Kuiper B., van Gool T., Leboyer M., Fond G., et al.. (2019). Driving Us Mad: The Association of Toxoplasma Gondii With Suicide Attempts and Traffic Accidents - A Systematic Review and Meta-Analysis. Psychol. Med. 49 (10), 1608–1623. doi: 10.1017/S0033291719000813 [PubMed] [CrossRef] [Google Scholar]{Netherlands, France; }
- Syn G., Anderson D., Blackwell J. M., Jamieson S. E. (2018). Epigenetic Dysregulation of Host Gene Expression in Toxoplasma Infection With Specific Reference to Dopamine and Amyloid Pathways. Infect. Genet. Evol. 65, 159–162. doi: 10.1016/j.meegid.2018.07.034 [PubMed] [CrossRef] [Google Scholar]{Australia; }
- Tan D., Vyas A. (2016). Toxoplasma Gondii Infection and Testosterone Congruently Increase Tolerance of Male Rats for Risk of Reward Forfeiture. Horm. Behav. 79, 37–44. doi: 10.1016/j.yhbeh.2016.01.003 [PubMed] [CrossRef] [Google Scholar]{Singapore; }
- Tong W. H., Pavey C., O'Handley R., Vyas A. (2021). Behavioral Biology of Toxoplasma Gondii Infection. Parasit. Vectors 14 (1), 77. doi: 10.1186/s13071-020-04528-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Singapore, Australia; }
- Tyebji S., Hannan A. J., Tonkin C. J. (2020). Pathogenic Infection in Male Mice Changes Sperm Small RNA Profiles and Transgenerationally Alters Offspring Behavior. Cell Rep. 31 (4), 107573. doi: 10.1016/j.celrep.2020.107573 [PubMed] [CrossRef] [Google Scholar]{Australia; }
- Tyebji S., Seizova S., Hannan A. J., Tonkin C. J. (2019). Toxoplasmosis: A Pathway to Neuropsychiatric Disorders. Neurosci. Biobehav. Rev. 96, 72–92. doi: 10.1016/j.neubiorev.2018.11.012 [PubMed] [CrossRef] [Google Scholar]{Australia; "Toxoplasma gondii is an obligate intracellular parasite that resides, in a latent form, in the human central nervous system. Infection with Toxoplasma drastically alters the behaviour of rodents and is associated with the incidence of specific neuropsychiatric conditions in humans. But the question remains: how does this pervasive human pathogen alter behaviour of the mammalian host? This fundamental question is receiving increasing attention as it has far reaching public health implications for a parasite that is very common in human populations."****}
- Uzorka J. W., Arend S. M. (2017). A Critical Assessment of the Association Between Postnatal Toxoplasmosis and Epilepsy in Immune-Competent Patients. Eur. J. Clin. Microbiol. Infect. Dis. 36 (7), 1111–1117. doi: 10.1007/s10096-016-2897-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{Netherlands; }
- Villares M., Berthelet J., Weitzman J. B. (2020). The Clever Strategies Used by Intracellular Parasites to Hijack Host Gene Expression. Semin. Immunopathol. 42 (2), 215–226. doi: 10.1007/s00281-020-00779-z [PubMed] [CrossRef] [Google Scholar]{France; }
- Vyas A., Kim S. K., Giacomini N., Boothroyd J. C., Sapolsky R. M. (2007). Behavioral Changes Induced by Toxoplasma Infection of Rodents Are Highly Specific to Aversion of Cat Odors. Proc. Natl. Acad. Sci. U. S. A. 104 (15), 6442–6447. doi: 10.1073/pnas.0608310104 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA; }
- Webster J. P., Kaushik M., Bristow G. C., McConkey G. A. (2013). Toxoplasma Gondii Infection, From Predation to Schizophrenia: Can Animal Behaviour Help Us Understand Human Behaviour? J. Exp. Biol. 216 (Pt 1), 99–112. doi: 10.1242/jeb.074716 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{United Kingdom; }
- Wong A. H., Josselyn S. A. (2016). Caution When Diagnosing Your Mouse With Schizophrenia: The Use and Misuse of Model Animals for Understanding Psychiatric Disorders. Biol. Psychiatry 79 (1), 32–38. doi: 10.1016/j.biopsych.2015.04.023 [PubMed] [CrossRef] [Google Scholar]{Canada; "Animal models are widely used in biomedical research, but their applicability to psychiatric disorders is less clear ...We argue that model animals have great potential to help us understand the core neurobiological dysfunction underlying psychiatric disorders and that marrying genetics and brain circuits with behavior is a good way forward."****}
- Worth A. R., Andrew T. R., Lymbery A. J. (2014). Reevaluating the Evidence for Toxoplasma Gondii-Induced Behavioural Changes in Rodents. Adv. Parasitol. 85, 109–142. doi: 10.1016/B978-0-12-800182-0.00003-9 [PubMed] [CrossRef] [Google Scholar]{Australia; }
- Xiao J., Li Y., Prandovszky E., Karuppagounder S. S., Talbot C. J., Dawson V. L., et al.. (2014). MicroRNA-132 Dysregulation in Toxoplasma Gondii Infection has Implications for Dopamine Signaling Pathway. Neuroscience 268, 128–138. doi: 10.1016/j.neuroscience.2014.03.015 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{USA, China; }
- Xu M., Gao J., Li S., Zeng M., Wu J., Luo M. (2020). Metagenomic Analysis and Identification of Emerging Pathogens in Blood From Healthy Donors. Sci. Rep. 10 (1), 15809. doi: 10.1038/s41598-020-72808-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{China; }
- Yang J., He Z., Chen C., Li S., Qian J., Zhao J., et al.. (2021). Toxoplasma Gondii Infection Inhibits Histone Crotonylation to Regulate Immune Response of Porcine Alveolar Macrophages. Front. Immunol. 12, 696061. doi: 10.3389/fimmu.2021.696061 [PMC free article] [PubMed] [CrossRef] [Google Scholar]{China; "[Toxo in blood donations] ... The most frequent bacterium was Escherichia coli ... and the most prevalent parasite was Toxoplasma gondii"}
No comments:
Post a Comment