Pages

Friday, February 10, 2017

The Layered Approach To Big Water - 4

Fig. 1
After pausing yesterday for a look at the sea level changes associated with the layers already covered in this series, today we move on to Layer Four and Layer Thirteen (Fig. 1).

The layers are numbered "00" through "17" so as to follow the naming convention of WOD.

Fig. 2 Tide Gauge Station Locations
Now that PSMSL station data has been added to the mix (beginning with yesterday's post), each ocean temperature graph (Fig. 3a, Fig. 4a) is paired with a complimentary PSMSL sea level change graph for that layer (Fig. 3b, Fig. 4b).

The graph of PSMSL tide gauge station locations (Fig. 2) informs us visually that the latitude layers may not always contain the same number of tide gauge stations.

Fig. 3a
The same thing goes for WOD zones, in the sense that zones may not always have the same number of measurements within their latitude, longitude, and depth parameters.

Generally though, there is enough data from the (at maximum) thirty six zones that make up a layer.

Fig. 3b
Also, more measurements are being added to the database as time goes on.

So, using the best datasets available, the graphs made from the data are worthy of consideration for the purposes of this research.

That said, again I see no relevant relation to the temperatures shown in the graph at Fig. 3a when compared with the sea level change in the graph at Fig. 3b.

Nor do I see any relevant relation to the temperatures shown in the graph at Fig. 4a with the sea level change in the graph at Fig. 4b.
Fig. 4a

There is more volatility in the temperatures shown in Fig. 3a and Fig. 4a than there was in previous graphs, but the mixing of temperatures tends to spread the heat among colder water layers.

That does not fit the "thermal expansion" argument well, because the concentration of heat is diminished, thus "thermal contraction" is also a relevant consideration.
Fig. 4b

Ignoring thermal contraction is not a proper scientific technique, because contraction bares competently on the matter being considered.

As we move closer to the poles in the next layers to be considered (3 and 14), there may be even more volatility in the water temperatures, and even more variations to the sea level change.

That is, as we enter the areas that have ice sheets (Greenland, Antarctica) and large land based glacier fields (Glacier Bay, Patagonia) we will consider some sea level fall zones, and move volatile ocean currents.

And finally, when we reach layers 0 and 17, I will have data from all of the WOD zones (in the CTD and PFL types) stored in my SQL database.

That will be helpful in future endeavors.

The next post in this series is here, the previous post in this series is here.

No comments:

Post a Comment